
Automating the Detection and Correction of Failures in Modern Persistent Memory Systems

by

Ian Glen Neal

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2023

Doctoral Committee:

Assistant Professor Baris Kasikci, Chair
Associate Professor Viswanath Nagarajan
Professor Steven Swanson, University of California San Diego
Professor Westley Weimer

Ian Glen Neal

iangneal@umich.edu

ORCID iD: 0000-0001-9721-781X

© Ian Glen Neal 2023

For my wife and daughter

ii

ACKNOWLEDGMENTS

A Ph.D. (from the LatinPhilosophiae Doctor, meaning “Doctor of Philosophy” in English) is

usually the highest degree of education one can achieve in a given �eld, and is awarded based

on the successful completion of both a course of study and on the merit of the original research

performed in recipient's chosen �eld. However, there are many alternative de�nitions of “Ph.D.”

that are useful for accurately describing the lived experience of earning one: “Piled Higher and

Deeper,” “Patiently Hoping for a Degree,” and “Praying Hard Daily” are among my favorites. This

being said, it is abundantly clear to me that I was only able get this far in my education and research

career with the continual support of many fellow researchers, friends, and family members.

I would �rst like to thank all of my mentors and colleagues who I have worked with through-

out the years. Of these, I �rst give thanks to Graham Mitchell, my high school computer science

teacher who helped kick-start my passion for the subject. I then thank Emmett Witchel, the pro-

fessor at the University of Texas at Austin who gave me multiple opportunities to get involved in

computer systems research and inspired me to pursue my graduate education. I then thank Baris

Kasikci (my of�cial advisor) and Andrew Quinn (my unof�cial advisor), who have both given me

countless pieces of advice, coupled with plenty of encouragement, that have gotten me to where I

am today: �nally con�dent enough to call myself a researcher. I �nally thank all of my collabo-

rators on the wide variety of projects that I have lead and contributed to throughout my graduate

career for presenting me with all sorts of interesting ideas, broadening my perspectives, and help-

ing me develop into a more mature engineer and researcher.

My research and this dissertation would not have been possible without the support of my close

friends who have provided the support and fun times I have needed for at least some semblance

of balance in my life. I thank Zack1 and Sidd2 for the numerous shenanigans over the years that

have given me3 many opportunities to unwind and be myself (or, myselves?). I thank Justin and

Amberly, and (the other) Zach and Syd for the “GEN-Cons” and all of their emotional and moral

support they have provided for my wife and I. I �nally thank Dennis, my best man, for keeping me

sane and laughing throughout the years (choir practice just isn't the same without you).

1Bast, Krieg, Finch, Caulipitus Therian Onzden (a.k.a. Cauthon), Draistian, and Red(acted).
2Zara, Phineas, Jellaby, Septimus, Algernon, Clifford, Frederick (“Freddie Boy”), Igneous, and Gustavo.
3Justice, Jeffrey, Silverwing, Hurin, Julius, Paul Invictus, Damir, and Felwin Felfan Calbis Turin (“Tayken Runn”).

iii

Last and certainly not the least, I thank my family. I thank my parents, Danny and Pamela, and

my sister, Audrey, for all of their love and support throughout the years, even when I did crazy

things like take internships in Seattle and move to Michigan to go to graduate school. I also thank

the Western Michigan COGWA congregation and include them in my thanks to my family as well,

since they are my family and have treated me as such since I �rst walked into the meeting hall

back in 2018; I sincerely believe a part of the reason I came to Michigan was to meet and get to

know all of you. Most importantly of all, I thank my wife, Ginny, who has been my best friend

for almost half of my life at this point and the best wife that any man could ask for. All of my

successes in graduate school have happened after we got married, and I believe that there is no

coincidence there. I tried to write something about what my life would be without her love and

support, but such a reality is beyond my reasoning capabilities at this point. I also thank Sneako,

the picky little pet axolotl that we keep together, for the levity and goofy antics he has provided for

both of us throughout the last half of my graduate career.

This chapter of my life has been more dif�cult than anything I have done before. As I rapidly

enter into the next stage of my life and re�ect, I thank God and each one of you for everything you

have done for me throughout my graduate career and throughout my life, as I would not have been

able to make it to this point without you. Thank you all so very much.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF LISTINGS . xi

LIST OF ACRONYMS . xiii

ABSTRACT . xiv

CHAPTER

1 Introduction . 1

1.1 Persistent Memory Background and Challenges 2
1.2 Limitations of Prior Work . 4
1.3 Thesis Statement and Contributions . 5
1.4 Dissertation Outline . 7

2 AGAMOTTO : How Persistent is your Persistent Memory Application?. 8

2.1 Introduction . 8
2.2 Background and Challenges . 11

2.2.1 Persistent Memory Programming . 11
2.2.2 Challenges of Detecting Persistent Memory Bugs 12

2.3 Persistent Memory Bug Study and Classi�cation 13
2.3.1 Missing Flush/Fence Pattern . 14
2.3.2 Extra Flush/Fence Pattern . 14
2.3.3 Other Bugs . 15
2.3.4 Summary and Insights . 16

2.4 Design . 16
2.4.1 Persistent Memory Model and Persistent Memory State Tracking 18
2.4.2 Persistence Bug Oracles . 19
2.4.3 Persistent Memory-Aware Search Algorithm 22

2.5 Implementation . 25

v

2.6 Evaluation . 26
2.6.1 Overview . 28
2.6.2 AGAMOTTO Reporting . 29
2.6.3 Performance Analysis . 30
2.6.4 Case Study: Persistent Memory Performance Bugs 31

2.7 Related Work . 32
2.8 Conclusion . 34

3 HIPPOCRATES: Healing Persistent Memory Bugs Without Doing Any Harm 36

3.1 Introduction . 36
3.2 Background and Challenges . 39

3.2.1 Persistent Memory Programming . 39
3.2.2 Existing Approaches for Finding Durability Bugs 40
3.2.3 Challenges of Automating Fixing Persistent Memory Bugs 40

3.3 Study of Durability Bugs and Fixes . 41
3.3.1 Study of Bugs . 42
3.3.2 Study of Bug Fixes . 42
3.3.3 Key Insights . 44

3.4 Algorithms and Design of HIPPOCRATES . 44
3.4.1 Overview . 44
3.4.2 HIPPOCRATES's Bug Fixes and Proof Sketches 45
3.4.3 Optimization of HIPPOCRATES's Fixes 52

3.5 Implementation . 54
3.5.1 Collecting Traces and Identifying Bug Locations 54
3.5.2 Implementation of Fixes . 55

3.6 Evaluation . 55
3.6.1 Effectiveness . 56
3.6.2 Accuracy . 57
3.6.3 Performance of Fixes . 58
3.6.4 HIPPOCRATES's Overhead . 59
3.6.5 Results Summary . 60

3.7 Discussion . 60
3.8 Related Work . 61
3.9 Conclusion . 62

4 SQUINT : Scaling Persistent Memory Crash-Consistency Testing via Representative
Testing .63

4.1 Introduction . 63
4.2 Background . 66

4.2.1 Persistent Memory and Persistent Memory Technologies 66
4.2.2 Persistent Memory Crash-Consistency Bugs 67
4.2.3 (Dynamic) Partial Order Reduction . 68
4.2.4 Prior PM Crash-Consistency Testing Approaches 69

4.3 Representative Testing . 70
4.4 Design of SQUINT . 72

vi

4.4.1 Tracing PM Operations (Step A) . 73
4.4.2 Persistence Graph Construction (Step B) 74
4.4.3 Subgraph Creation (Step C) . 75
4.4.4 Grouping Update Behaviors (Step D) 77
4.4.5 Model Checking (Step E) . 79
4.4.6 Limitations . 80

4.5 Implementation . 81
4.6 Evaluation . 81

4.6.1 Bugs Detected by SQUINT . 82
4.6.2 Scalability of Representative Testing . 82
4.6.3 Coverage Comparison to Pattern-Based Approaches 84

4.7 Discussion . 86
4.8 Related Work . 86
4.9 Conclusion . 87

5 Conclusion and Future Work .88

5.1 Automatically Finding and Fixing Platform-Speci�c Bugs 89
5.2 Automating Semantic State-Space Reduction Policies 89

BIBLIOGRAPHY . 90

vii

LIST OF FIGURES

FIGURE

2.1 Components of AGAMOTTO . Green-shaded boxes are AGAMOTTO-speci�c contri-
butions to the existing symbolic execution engine. 17

2.2 State Space Exploration Comparison.State space exploration with two strategies:
(1) KLEE-Default (based on code coverage), (2) AGAMOTTO's priority-driven explo-
ration. This example corresponds with the bug described in Listing 2.7. 24

2.3 Bug Detection Comparison. Comparison of the KLEE's default search strategy to
AGAMOTTO's search strategy. 30

2.4 Performance Bug Analysis.The results of the Persistent Memory (PM) performance
bug case study. The write throughput (in kilo-operations per second) of the P-CLHT
data structure before and after patching performance bugs. “Original” denotes the
unmodi�ed P-CLHT structure and “Patched” denotes P-CLHT after we patch the per-
formance bugs. 32

3.1 H IPPOCRATES System Overview. 45
3.2 Performance Analysis of HIPPOCRATES's Fixes. Performance of the three persis-

tent versions of Redis with 95% con�dence intervals. HIPPOCRATESis able to provide
�xes which are on-par with manual approaches. 58

4.1 Partial Order Reduction (POR) versus Dynamic Partial Order Reduction
(DPOR). A comparison of how DPOR compares to POR when performing model
checking on PM applications. 68

4.2 Functional Overview of SQUINT . 72
4.3 Persistence Graph Construction (Step B).. 74
4.4 Type Subgraph Creation. An example of how the persistence graph is grouped into

type subgraphs (Step C1). 75
4.5 Epoch Splitting Example. An example of how an instance subgraph (all shaded

nodes) is split into epoch subgraphs (Step C3) by using information from the full
persistence graph. 76

4.6 Update Behavior Grouping Example. An example of how the update behaviors
found in Figure 4.5 are grouped by similarity and how Epoch 1 is chosen as the rep-
resentative (Step D). 78

4.7 Crash-Consistency Test Generation.An example of how SQUINT would perform
testing (Step E) of Epoch 1 (as found in Figure 4.6). 79

viii

4.8 SQUINT versus DPOR Baselines.A comparison of SQUINT (“RepTest”) to three
baselines: Jaaru [57], con�gured to test the entire application (“Jaaru”) and to
skip program initialization (“Jaaru-NoInit”); and Jaaru's algorithm implemented in
SQUINT's model checker (“DPOR”). The� marker indicates the completion of test-
ing if it occurred before the time limit, which only occurred for SQUINT. 84

ix

LIST OF TABLES

TABLE

2.1 Bug Survey. The results of our initial PM bug survey conducted on bugs reported
in Persistent Memory Development Kit (PMDK) [32] and on bugs discovered by
PMTest [104] and XFDetector [103]. 13

2.2 Tested Software Versions.Software con�gurations we test with AGAMOTTO; note
that we tested two different PM versions of Redis-pmem. 28

2.3 Bugs Found By AGAMOTTO . The bugs found using AGAMOTTO. For each bug class
(MC: Missing �ush/fence Correctness,MP: Missing �ush/fence Performance,EP:
Extra �ush/fence Performance, andAS: Application-Speci�c), we report the number
of new bugs AGAMOTTO found,N, and the number of bugs detected that were previ-
ously known,K. 28

2.4 Analysis Overhead.The of�ine overhead of AGAMOTTO's static analysis. Thousand
lines of code (KLOC) is provided for program sources (the driver applications for
NVM-Direct and PMDK) and for shared libraries. 31

2.5 Prior Work Comparison. A qualitative comparison between AGAMOTTO and re-
lated work, as measured by our design goals (§2.4). 32

3.1 Study of PM Bug Fixes. An overview of the 26 PMDK bugs and their �xes we
analyze. The �rst 17 are bugs with root causes within PMDK library code. The
remaining 9 bugs are caused by API misuse within PMDK's unit tests. 41

3.2 Comparison of HIPPOCRATES's Fixes. Qualitative comparison of HIPPOCRATES

�xes and PMDK developer �xes. 57
3.3 Of�ine Overhead of H IPPOCRATES. 59

4.1 SQUINT 's Testing Results.SQUINT �nds 108 bugs (53 new); 52 of the new bugs are
in systems tested by prior work. 83

4.2 Tested Application Versions. The versions of applications we tested and the prior
works which also test those versions. All applications were tested using PMDK 1.8. . 85

x

LIST OF LISTINGS

LISTING

2.1 PM Programming Example. An example of PM programming on the x86 CPU
architecture. 12

2.2 Missing Flush/Fence Bug Example.A missing �ush/fence correctness bug adapted
from PMDK Issue #1103, Pull Request (PR) #3907. 14

2.3 Extra Flush/Fence Bug Example. An extra �ush/fence performance bug adapted
from PMDK Issue #1117, PR #3860. 15

2.4 Ordering Bug Example. An example correctness bug adapted from PMDK Issue #14. 16
2.5 Universal Persistence Bug Oracles.Pseudo-code for Universal Persistence Bug Or-

acles and how they are used as AGAMOTTO explores the state space. 20
2.6 Custom Oracle Example. A pseudo-code example of a custom oracle, designed to

check for redundant PMDK transaction “adds” (i.e., redundant log updates). 21
2.7 Priority Calculation Example. An example of AGAMOTTO's static analysis. All

PM-modifying instructions are highlighted. Each instruction is annotated with a com-
ment which denotes the result of the priority calculation. 23

3.1 Intraprocedural Fix Example. An example missing-�ush&fence bug with an in-
traprocedural �x, adapted from PMDK Issue #1103. 43

3.2 Interprocedural Fix Example. An example missing-�ush&fence bug with an inter-
procedural �x, adapted from PMDK Issue #463. 43

3.3 Missing-Fence Bug Fix Example.An example missing-fence bug that is �xed by the
intraprocedural insertion of a memory fence (i.e., anSFENCEinstruction). 47

3.4 Missing-Flush Bug Fix Example. An example of a missing-�ush that is �xed by a
intraprocedural cache-line �ush insertion. 48

3.5 Persistent Subprogram Transformation Example.An example interprocedural �x
as implemented by HIPPOCRATESas apersistent subprogram transformation. The
functions labeled “new” (and highlighted) are generated by HIPPOCRATESduring the
persistent subprogram transformation. Line 25 is replaced with Line 27 during the
transformation. 50

3.6 Heuristic Calculation Example. An example heuristic calculation performed on
Listing 3.5 to determine where to place the interprocedural �x. 54

4.1 Crash-Consistency Bug Example #1.A simpli�ed excerpt of a crash-consistency
bug in Level hashing [172]. 67

4.2 Crash-Consistency Bug Example #2. A simpli�ed excerpt from another crash-
consistency bug in Level hashing [172].entry t is de�ned in Listing 4.1. 70

xi

4.3 Synthetic Crash-Consistency Bug with Added Ordering Constraints.
insert ordered is a synthetic version ofinsert (Listing 4.1) with an added
ordering constraint. With the added ordering constraint,insert ordered exposes
some, but not all, of the crash-consistency bugs thatinsert can expose. 71

xii

LIST OF ACRONYMS

API Application Programming Interface

CPU Central Processing Unit

CXL Compute Express Link

DPOR Dynamic Partial Order Reduction

DRAM Dynamic Random-Access Memory

eADR Extended Asynchronous DRAM Refresh

GB gigabyte

IR Intermediate Representation

ISA Instruction Set Architecture

KB kilobyte

LOC Lines of Code

PM Persistent Memory

PMDK Persistent Memory Development Kit

POR Partial Order Reduction

PR Pull Request

MB megabyte

NVM Non-Volatile Main Memory

YCSB Yahoo! Cloud Serving Benchmark

xiii

ABSTRACT

Modern software systems are deeply embedded into our daily lives; the failures of these systems

can therefore result in massive real-world harm. Consequently, considerable resources are spent

�nding and �xing bugs in testing. Overall, the software industry spends billions of dollars each

year on �xing bugs, and ultimately loses trillions of dollars each year due to poor software quality

(as a result of bugs that escape testing and wreak havoc once deployed).

One particularly challenging domain of software development for developers is the area of Per-

sistent Memory (PM) programming, an abstraction where developers write software that accesses

and updates long-term storage with direct memory operations. The PM programming abstraction

has become popular in recent years due to new hardware advances in low-latency, byte-addressable

storage devices. Unfortunately, writing crash-consistent PM applications is challenging, as un-

timely program crashes can result in data corruption and loss if the application does not carefully

order updates to PM, and testing all possible crashes for data consistency is intractable. Further-

more, crash-consistency bugs are dif�cult to manually debug and repair, taking weeks or months

for a developer to correctly �x. Without advancements in PM testing and program repair tools,

developers will be unable to effectively write correct and ef�cient applications for modern PM

platforms, hampering the ease of their adoption.

Motivated by these PM software development challenges, this dissertation explores research

in developing software techniques that automate dif�cult and time-consuming PM development

tasks. We study PM system design, bugs, and bugs �xes and observe that we can automatically

provide scalable and high-coverage bug detection and correction by approximating the reasoning

performed by developers as they develop their applications. Based on this insight, we �rst explore

automated bug detection and correction for PM application bugs caused by the misuse of platform-

speci�c PM primitives. We develop a testing technique that prioritizes testing program paths that

heavily modify PM, as these paths are more likely to misuse PM. We implement this technique

in AGAMOTTO, a symbolic-execution tool that thoroughly explores PM applications to uncover

platform-speci�c bugs, which we use to �nd 84 new bugs while incurring no false positives. We

then develop a technique for generating �xes for PM platform-speci�c bugs that are provably

correct, coupled with heuristic performance optimizations that do not compromise correctness,

and implement the technique in a compiler tool, HIPPOCRATES.

xiv

Second, this dissertation explores automated bug detection for general crash-consistency bugs

in PM applications (i.e., bugs caused by the improper ordering of PM updates). We develop a

technique that automatically identi�es groups of PM program behaviors that are likely to result in

the same crash-consistency bugs and only tests one behavior out of the group, thus providing high

testing accuracy (by testing all types of behaviors thoroughly) while also increasing ef�ciency (by

eliminating redundant testing on functionally-similar behaviors). We implement this technique in

SQUINT, a model-checking tool that selectively tests groups of PM program behaviors identi�ed

from a dynamic program trace, which we use to �nd 108 PM crash-consistency bugs.

The works presented in this dissertation provide a holistic automated testing and program repair

solution for PM software developers. In sum, these tools have been used to �nd and �x over two

hundred PM bugs in real-world PM systems, demonstrating both the need for such tools and the

ef�cacy of the tools presented in this dissertation.

xv

CHAPTER 1

Introduction

We live in an era where computing is truly ubiquitous, where software abounds and technol-

ogy is embedded into the daily tasks of many people around the globe. Software is crucial to

many of us, but unfortunately, software can experience a wide variety of failures. These failures

range from simple programming mistakes, which can be relatively easy to correct before impact-

ing users, to complex ordering problems or performance degradations that may only manifest in

a non-deterministic fashion, making it challenging for developers to uncover these errors, even

though they can have a large impact on users when they do occur. Consequently, software compa-

nies spend considerable time and money testing their software for bugs [113] and then �xing those

bugs, costing the software industry billions of dollars each year in �nding and �xing bugs [17, 171]

and trillions of dollars due to overall poor software quality [87].

While developing new software is tedious and error-prone due to the challenges of �nding

and �xing bugs, developers must keep up with new software and hardware trends in order to

deliver high-quality systems and applications. One such emerging trend in the past few years

has been the uptick in applications leveraging PM. Recently, the software industry and software

researchers alike have taken renewed interest in PM programming [68, 71, 114, 140], which is a

programming abstraction that enables applications to address durable storage using direct memory

accesses [148]. PM has experienced this renewed interest due to recent hardware advances in low-

latency and byte-addressable storage, such as Intel Optane Pmem [34, 36] and Compute Express

Link (CXL)-attached non-volatile storage [27, 52], which now enables the development of highly

ef�cient storage systems using PM hardware and software abstractions [32, 77, 164].

Unfortunately, writing correct PM applications is challenging. First of all, modern PM plat-

forms often require developers to correctly use PM-speci�c memory ordering primitives (e.g.,

cache �ush and memory fence instructions) to ensure that PM updates are written to the backing

storage device; the omission or incorrect use of these primitives can lead to data corruption, data

loss, or performance issues. Second, even if all PM updates are properly made persistent, those

updates may not be persisted in the correct order, leading to data inconsistencies or data loss if a

crash interrupts a PM program's execution.

1

To combat the cost and effort of testing applications and �xing bugs, there has been increased

research and development in software methods that developers can use to automate these tasks.

However, there are many challenges in building and using such methods. Testing tools cannot

feasibly test for all possible bugs and must therefore minimize the number of tests run to expose

the most bugs. Furthermore, program repair tools then must carefully repair programs to ensure

produced patches are effective and do not induced further program failures or incur high overhead.

The challenges of �nding and �xing bugs are more than apparent for developers of PM applica-

tions. PM applications have large state-spaces that traditional crash-consistency testing approaches

cannot scale to test, as PM applications make �ne-grained updates that result in many more crash-

states being generated than can be generated by typical, block-based storage systems [90, 116].

Furthermore, �xing PM bugs once they are found is challenging for the same reason that it is chal-

lenging to write correct PM code from the beginning: it is dif�cult to correctly order PM updates

such that the application is both correct and ef�cient, as more strictly ordered update sequences are

easier to reason about during development, but are often less ef�cient at run-time.

The challenges of building ef�cient and effective methods to help developers handle software

defects in PM systems motivates this dissertation. In this dissertation, we investigate the challenges

of testing programs and repairing bugs in modern systems, with a focus on systems with added

challenges due to their use of new PM platforms.

1.1 Persistent Memory Background and Challenges

Persistent Memory (PM) is a programming abstraction where programs address durable storage

(i.e., data that lives beyond a single execution of a program or boot cycle of a machine) via a

memory address space, the same manner in which volatile main memory (e.g., temporary stack

variables) is modi�ed [9, 144, 148]. PM is an appealing programming abstraction because long-

lasting program data structures can be directly modi�ed without requiring serialization and de-

serialization through other storage abstractions (e.g., �le-system IO calls), simplifying storage-

interfacing code and allowing greater code reuse between volatile and non-volatile operations.

PM programming is not a new concept [148], but has seen a growth in research popularity

due to advancements in Non-Volatile Main Memory (NVM) hardware (e.g., ReRAM [3], STT-

MRAM [6], and most importantly, PCM [157]), as NVMs form the basis for ef�cient PM program-

ming platforms; a minimalism and highly ef�cient PM implementation can be to simply allow an

application to issue memory operations directly against a byte-addressable NVM. Most notably,

Intel has commercialized three versions of PCM-based NVMs in its Intel Optane Persistent Mem-

ory line of products [4, 34–36, 38, 69], which can offer PM accesses with latencies that are only

2–3� higher than the latencies of DRAM [147, 164]. With the use of ef�cient NVMs, the PM

2

abstraction allows applications to directly interact with persistent data in an ef�cient manner.

Unfortunately, writing PM applications can be challenging, as it is dif�cult to ensure that the

application is both correct and ef�cient. There are three general types of crash-consistency bugs in

PM applications:

1. Persistence Bugs(also referred to asPlatform-Speci�c Bugsor Application-Independent

Bugs). Many PM platforms require applications to issue speci�c instructions (i.e.,persis-

tenceor durability instructions) in order for memory writes to PM to become durable. For

example, PM applications that use Intel Optane DC Pmem [35, 36, 38] as their backing stor-

age device often require both cache-line �ushes and memory fences to be issues to force PM

writes to leave the Central Processing Unit (CPU) cache and be written to the NVM hard-

ware [34, 69, 77, 137]. The misuse of these persistence instructions lead topersistence bugs.

There are two subtypes of persistence bugs:durability bugs, where required persistence in-

structions are omitted, resulting in data inconsistencies; andperformancebugs, caused by

the unnecessary issuance of these instructions, which can degrade performance. These bugs

are consideredapplication-independentbecause these persistence instructions must be used

correctly regardless of the application's semantics.

2. Ordering Bugs (also referred to asApplication-Speci�c Bugs). Even when persistence in-

structions properly ensure that PM updates become persistent, an application can issue up-

dates in an improper order that, when interrupted from a crash, results in data inconsistencies.

Ordering bugs are therefore caused by improper ordering between updates to semantically-

related PM data and arise regardless of whether applications include appropriate PM ordering

instructions. These bugs areapplication-speci�cbecause the proper order of PM updates is

dependent on how an application uses the persisted data and what the persisted data repre-

sents in the program state, which are application-speci�c properties.

3. Compiler Bugs. Certain compiler optimizations assume that certain types of memory op-

erations may be safely reordered or split apart without affecting the correctness of the ap-

plication. For example, some compilers assume non-atomic stores may be safely split into

multiple smaller stores in a procedure referred to as store tearing [58]. However, while these

transformations are safe for volatile-memory algorithms, the ordering and granularity of

stores does impact the crash-consistency properties of PM-modifying memory operations.

Ultimately, this results in code that, when considered in the unoptimized form written by

the developer, is not susceptible to crash-consistency bugs, but is once optimized by the

compiler.

Each of these three types of PM bugs can have a variety of different consequences. We list four

possible types of failures below:

3

• Recovery failure. Recovery failures occur when a PM application crashes in such a way

that it failed to enforce consistency within its state contained in a crash-state that is re-

quired by its recovery code. Recovery failures can be caused by any of the three general

causes of crash-consistency bugs listed above. Finding recovery failures often requires less

application-speci�c knowledge because they can be automatically detected on an arbitrary

PM application (i.e., by attempting to restart the application after a crash).

• Data corruption. Alternatively, a PM application may initially recover from a crash, but

produce incorrect results or perhaps crash later in an execution due to incomplete modi�-

cation of internal data structures at the time of the crash. Data corruption bugs can also

be dif�cult to detect without application-speci�c oracles, because �nding a data corruption

bug requires knowing an application's intended behavior in the event of a crash (e.g., the

expected output of a speci�c operation).

• Data loss. Data loss occurs when an unexpected crash causes data to either not become

durable or to become unreachable, resulting in an application state where data goes missing.

Data loss bugs can also be dif�cult to detect without application-speci�c oracles, because

�nding a data loss bug also requires knowing an application's intended behavior in the event

of a crash (i.e., how much data, if any, can be lost).

• Performance degradation. Performance persistence bugs in particular can erode the per-

formance of PM applications. Persistence instructions often operate by enforcing speci�c

memory orderings in the CPU's execution, which restricts the CPU's memory parallelism.

These PM bugs can be dif�cult to both �nd and �x during the development of PM applications.

Due to the complexity and impact that PM bugs can have, we are motivated to investigate solutions

for automating the detection and correction of PM bugs in emerging PM storage systems.

1.2 Limitations of Prior Work

Finding PM Bugs While research in software engineering has explored automated bug detection

for a wide variety of different types of bugs and types of applications, �nding PM crash-consistency

bugs requires specialized tooling to detect platform-speci�c PM and cope with the state space of

PM applications. Prior work has created tools and techniques for testing modern PM applications,

however existing approaches force developers to chose betweenscalability andcoverageduring

testing, limiting the practical usability of these tools. Existing approaches that scale to testing large

systems sacri�ce testing coverage by dramatically limiting the scope of bugs they can �nd, result-

ing in many false negatives (i.e., missing bugs) [31, 41, 50–52, 56, 103, 104, 126]. On the other

4

hand, existing approaches that provide high testing coverage by exhaustively testing all possible

ways that a PM application could crash and check if these crashes result in data inconsistencies or

the inability to recover [50, 57, 90, 97]. These high-coverage approaches, even with state-of-the-

art state generation optimizations, cannot scale to real-world systems, and are thus only usable to

developers who want to test extremely small PM applications or embedded libraries [57].

Fixing PM Bugs The challenge of automatically �xing bugs, while practically unexplored

speci�cally for modern PM systems, has been explored in many prior works for repairing com-

modity software systems [92, 93, 139] and techniques for general automated program repair are

increasing being deployed to repair bugs in production systems [60, 109]. These tools often lever-

age unsound approaches to repair bugs, which could result in patches that do not �x the original

bug or even introduce new bugs; due to the challenges of �nding and manually repairing PM bugs,

such approaches could lead to the creation of subtle errors that are even more dif�cult for devel-

opers to uncover or reason about. A subset of automated program repair tools target narrower

classes of bugs and leverage domain-speci�c insights about the nature of those bugs to provide

stronger guarantees about the correctness of the �xes that they provide [67, 80]; however, these ap-

proaches still leave something to be desired, as they provide no sound or formal guarantees about

the correctness of their �xes.

1.3 Thesis Statement and Contributions

In this dissertation, we introduce new techniques for automating the detection and correction of

PM bugs in modern PM systems. Our overarching insight and thesis statement is thatwe can

ef�ciently and thoroughly automate bug detection and correction by approximating and au-

tomating the reasoning performed by developers as they write, test, and repair their appli-

cations. Our insight is drawn from observations about how developers organize their applications,

test their applications, and �x bugs in their applications. Developers often test applications by

identifying and testing execution paths which are the most prone to encountering the targeted

type of bug; ergo, replicating this approach to set priorities during automated path exploration

leads to accelerated discovery of PM bugs (Chapter 2). Developers then often endeavor to �x

bugs by trying to �nd the most ef�cient �x that does not compromise the correctness of the �x,

which inspires our approach towards correctly �xing PM bugs with heuristically-optimized �xes

(Chapter 3). Finally, developers often implicitly organize their application in a way that reveals

the crash-consistency requirements of the program (e.g., �elds that must be consistent before a

crash are grouped into the same data structure). So, rather than trying to build testing approaches

that generalize crash-consistency requirements from other sample applications in order to scale

5

testing [31, 41, 50–52, 56, 103, 104, 126], we instead focus on automatically uncovering the se-

mantics of the application-under-test to prune unnecessary testing. Overall, our approach results in

bug discovery that is simultaneously more scalable and more accurate than prior work (Chapter 4).

We explore our insight in the three projects that are detailed in this dissertation, which provide

ample evidence of the effectiveness of our approach in building techniques to automatically detect

and correct PM bugs. We summarize the contributions of this dissertation below:

AGAMOTTO Writing PM applications that are simultaneously correct and ef�cient is challeng-

ing, resulting in many PM applications that contain correctness and performance bugs. Prior work

on testing PM systems has low bug coverage as it relies primarily on extensive test cases and de-

veloper annotations. In our aim to build a system for that more thoroughly tests PM applications,

we �rst perform and present a detailed study of 63 bugs from popular PM projects. We identify

two application-independent patterns of PM misuse (i.e., persistence bugs) which account for the

majority of bugs in our study and can be detected automatically. We then present AGAMOTTO,

a generic and extensible system for discovering misuse of PM in PM applications. Unlike exist-

ing tools that rely on extensive test cases or annotations, AGAMOTTO symbolically executes PM

systems to discover bugs. AGAMOTTO introduces a new symbolic memory model that is able to

represent whether or not PM state has been made persistent. AGAMOTTO uses a state space explo-

ration algorithm, which drives symbolic execution towards program locations that are susceptible

to persistence bugs. We use AGAMOTTO to identify 84 new persistence bugs in 5 different PM

applications and frameworks while incurring no false positives.

H IPPOCRATES PM-speci�c testing and debugging tools can help developers �nd PM durability

bugs, however even with such tools,�xing durability bugs can be challenging. To understand why,

we extend our original study of durability bugs and �nd that although durability bug �xes seems

simple, the actual reasoning behind the �x can be complicated and time-consuming. Overall, the

severity of these bugs coupled with the dif�cultly of developing �xes for them motivates us to

consider automated approaches to �xing durability bugs. We therefore develop HIPPOCRATES, a

system that automatically �xes durability bugs in PM systems. HIPPOCRATESautomatically per-

forms the complex reasoning behind durability bug �xes, relieving developers of time-consuming

bug �xes. HIPPOCRATES's �xes are guaranteed to besafe, as they are guaranteed to not intro-

duce new bugs (“do no harm”). We use HIPPOCRATESto automatically �x 23 durability bugs in

real-world and research systems. We show that HIPPOCRATESproduces �xes that are function-

ally equivalent to developer �xes and can generate code that is as ef�cient or more ef�cient than

developer-written durability code.

6

SQUINT In this work, we introducerepresentative testing: a new PM crash-state reduction strat-

egy that simultaneously achieves high scalability and high coverage. Our key observation is that

many crash-states produced by a PM application can be consideredequivalentbecause they evince

the same crash-consistency bug, even though the crash-states are not themselves equivalent. We

design a heuristic that approximates a small set of representative crash-states, or, a set of crash-

states that is equivalent to all of the crash-states that an execution can produce. We build SQUINT,

which uses representative testing to perform crash-consistency testing on only the small set of rep-

resentative crash-states. We demonstrate that SQUINT achieves high coverage, since it �nds 108

bugs (53 new) across 19 real-world PM applications, and show that it achieves high scalability,

since it scales to real-world PM applications more effectively than existing works.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. We �rst focus on how to thoroughly test PM

systems for PM persistence bugs and present AGAMOTTO, a symbolic-execution approach to thor-

oughly testing PM applications for persistence bugs (Chapter 2). We then present HIPPOCRATES,

a compiler tool that can take PM durability bug reports from PM-testing tools like AGAMOTTO

and automatically �x them using provably-correct �xes (Chapter 3). We then present SQUINT, a

PM-testing tool that ef�ciently detects more general crash-consistency bugs in PM systems, and

further discusses what work is remaining in this project (Chapter 4). Finally, we conclude and

discuss possible future research directions based on the techniques and insights presented in this

dissertation (Chapter 5).

7

CHAPTER 2

AGAMOTTO : How Persistent is your Persistent

Memory Application?

Persistent Memory (PM) is a helpful programming abstraction that developers can use to write

applications that directly modify persistent data, without the overhead of a �le system. However,

writing PM applications that are simultaneously correct and ef�cient is challenging. As a result,

PM applications contain correctness and performance bugs. Prior work on testing PM systems has

low bug coverage as it relies primarily on extensive test cases and developer annotations.

In this chapter we aim to build a system for more thoroughly testing PM applications. We

inform our design using a detailed study of 63 bugs from popular PM projects. We identify two

application-independent patterns of PM misuse which account for the majority of bugs in our study

and can be detected automatically. The remaining application-speci�c bugs can be detected using

compact custom oracles provided by developers.

We then present AGAMOTTO, a generic and extensible system for discovering misuse of per-

sistent memory in PM applications. Unlike existing tools that rely on extensive test cases or anno-

tations, AGAMOTTO symbolically executes PM systems to discover bugs. AGAMOTTO introduces

a new symbolic memory model that is able to represent whether or not PM state has been made

persistent. AGAMOTTO uses a state space exploration algorithm, which drives symbolic execution

towards program locations that are susceptible to durability bugs. AGAMOTTO has so far identi�ed

84 new bugs in 5 different PM applications and frameworks while incurring no false positives.

2.1 Introduction

PM is a promising programming abstraction that offers an appealing performance-cost trade-off

for application developers. New NVM technologies, such as Intel Optane DC PMem [69], can

offer developers a PM abstraction with latencies that are only 2–3� higher than the latencies

of Dynamic Random-Access Memory (DRAM) [147]. Moreover, such NVM technologies are

8

cheaper than DRAM per gigabyte (GB) of capacity [4]. As byte-addressable memory, NVM can

also be accessed via processor load and store instructions. Application developers have already

started building systems that use NVM directly, without relying on heavyweight system calls to

ensure durability, including ports of popular systems such as memcached [39] and Redis [33].

While using PM directly via persistent data structures can offer good performance, it is chal-

lenging to write PM-based applications that are simultaneously correct and ef�cient [18, 26, 63,

106, 108, 119, 152, 165]. PM platforms often require the use of specialpersistenceinstructions to

enforce the crash-consistency of updates. For example, PM writes in the CPU cache may need to be

explicitly �ushed to PM using speci�c instructions or Application Programming Interface (API)s,

and those PM �ush operations may need to be ordered using memory fences to enforce crash con-

sistency. Incorrect usage of these mechanisms can result inpersistence bugswhich break crash-

consistency guarantees or degrade application performance. Persistence bugs are challenging to

diagnose because their symptoms are easily masked. For example, crash-consistency bugs may be

masked because PM writes are implicitly �ushed when dirty (or updated) cache lines are evicted

from the CPU—furthermore, �ushes which are required for proper crash consistency under one ex-

ecution path may be redundant and unnecessary under a different program execution path, leading

to performance degradations.

Several systems have been built to aid with testing PM applications; however, these existing

approaches are either speci�c to a target application or require signi�cant manual developer effort.

Intel designed Yat [90] andpmemcheck [31] speci�cally to test the crash consistency and durability

of PMFS (Persistent Memory File System) [43] and PMDK (Persistent Memory Development

Kit) [32], respectively. To �nd bugs, Yat exhaustively tests all possible update orderings, and

pmemcheck tracks annotated updates. Both of these tools are speci�c to a single system (PMFS

and PMDK, respectively) and are hard to generalize. Other tools like Persistence Inspector [126],

PMTest [104], and XFDetector [103] are applicable to general PM systems, but require developer

annotations and extensive test suites to thoroughly test PM applications.

In order to determine the extent to which persistence bug �nding can be automated (i.e., not

require program annotations) to test general systems, we perform a study of 63 bugs in PM appli-

cations and frameworks. We identify two application-independent patterns of PM misuse (missing

�ush/fenceandextra �ush/fence) which cover the majority (89%, or 56 out of 63) of bugs in our

study and can be detected automatically. The remaining bugs are application-speci�c; for example,

many of the remaining bugs involve misusing transactions when updating data-structures. Existing

PM testing approaches do not identify application-independent patterns of misuse, and therefore

require annotations to detect any PM bug. In addition to classifying bugs based on their pattern of

PM misuse, we also classify bugs based on whether they affect performance or correctness.

Based on the insights gained through our study, we present AGAMOTTO, a framework for de-

9

tecting bugs in PM applications that does not rely on extensive test cases. Instead, AGAMOTTO

uses symbolic execution [12] to thoroughly explore the state space of a program1. In addition to

expanding path coverage, symbolic execution also allows AGAMOTTO to detect persistence bugs

in an application without access to underlying physical PM resources. AGAMOTTO introduces a

memory model to track updates made to PM by the explored program paths, and supportsbug

oracleswhich use the PM state to identify bugs in the program. AGAMOTTO automatically detects

persistence bugs using twouniversal persistence bug oraclesbased on the common patterns of PM

misuse identi�ed by our study. The �rst is anun�ushed/unfencedoracle that identi�es modi�ca-

tions to PM cache lines that are not �ushed or fenced (both a correctness and performance issue)

and the second anextra-�ushed/fencedoracle that identi�es duplicate �ushes of the same cache

line or unnecessary fences (a performance issue [26, 106, 119, 152, 165]).

To identify application-speci�c persistence bugs, AGAMOTTO allows developers to provide

custom persistence bug oracles. To demonstrate the versatility of custom oracles, we implemented

two such oracles in AGAMOTTO to detect bugs related to misuse of PMDK's Transaction API [32,

103, 104].

Analyzing large PM applications using traditional symbolic execution [12] leads to scalability

issues since the state space of possible executions grows exponentially with the size of the analyzed

program. AGAMOTTO uses a novel search algorithm that prunes the execution states it analyzes,

allowing AGAMOTTO to discover more bugs. Prior to symbolic execution, AGAMOTTO uses a

whole-program static analysis to determine instructions that modify PM (stores, �ushes, etc.) and

assigns a unit priority to them. AGAMOTTO then assigns an aggregate priority to each instruc-

tion by back-propagating the unit priorities from each PM-modifying instruction—this makes the

aggregate priority a measure of the number of PM-modifying instructions reachable from a partic-

ular instruction. AGAMOTTO uses priorities to steer symbolic execution into program states that

frequently modify PM.

We used AGAMOTTO to �nd 84 new persistence bugs in real-world systems including PMDK

(a mature PM library) [32], memcached-pm [39], Redis-pmem [33], NVM-Direct [11], and

RECIPE [95]. In particular, we found 13 new correctness and 70 new performance bugs using

the universal persistence bug oracles, and 1 new correctness bug using a custom durability bug

oracle. We report all bugs to their authors, and so far 40 have been con�rmed and none denied.

In this chapter we make the following contributions:

• We perform a detailed study of persistence bugs in PMDK as well as bugs found by prior

work, and present a new taxonomy of persistence bugs.

1AGAMOTTO is named after the “Eye of Agamotto” (i.e., the Time Stone in the Avengers franchise), which has
the power to allow the user to explore alternative timelines [156], like how AGAMOTTO allows users to symbolically
explore many execution paths for PM persistence bugs.

10

• We build AGAMOTTO, a PM bug detection tool that can test real-world PM programs using

a novel state exploration algorithm. AGAMOTTO automatically detects bugs using two uni-

versal persistence bug oracles, without relying on user annotations or an extensive test suite.

AGAMOTTO is extensible with custom bug oracles that can detect application-speci�c bugs.

AGAMOTTO's artifact is publicly available on GitHub [120].

• We use AGAMOTTO to �nd 84 new bugs in 5 applications and PM libraries, compared to

the 6 persistence bugs found in persistent applications by the state of the art (PMTest [104],

which �nds 3 bugs, and XFDetector [103], which �nds 3 bugs). AGAMOTTO does not incur

any false positives in our evaluation.

In the rest of this chapter, we �rst provide background on PM programming and describe the

challenges of PM bug �nding (§2.2). We then present the results of our PM bug study and provide

common patterns of PM misuse that identify PM bugs (§2.3). Then, we discuss the high-level

design of AGAMOTTO and detail the persistence bug detection algorithms and search techniques

that power AGAMOTTO's bug detection capabilities (§2.4). Next, we brie�y discuss AGAMOTTO's

implementation (§2.5) and evaluate the system with respect to both the number of bugs found and

the impact of these bugs (§2.6). Finally, we discuss related PM bug detection work (§2.7) and

conclude (§2.8).

2.2 Background and Challenges

We now provide a background on PM programming and dif�culties associated with writing correct

and ef�cient PM programs.

2.2.1 Persistent Memory Programming

PM implementations support a programming interface that diverges from that of conventional

storage devices. Rather than using comparatively slow system calls to access persistent memory,

applications can accelerate PM accesses by directly mapping pages of PM into their address space

and performing byte-addressable load/store operations. Like volatile memory accesses, PM ac-

cesses and modi�cations may be cached and buffered in volatile memory (i.e., the CPU cache) in

order to increase performance.

The added performance comes at the cost of increased complexity for the application developer.

Volatile memory can retain updates to PM for an inde�nite period of time (e.g., until a cache line

gets evicted). Ensuring that stores to PM are durable requires two steps. First, a developer must

issue a�ush for the cache line that contains the updated data. Then, the developer orders �ushes

11

1 int * x = pm_alloc();
2 int * y = pm_alloc();
3

4 * x = 1;
5 clwb(x);
6 sfence();
7

8 * y = 1;
9 clwb(y);

10 sfence();

Listing 2.1: PM Programming Example. An example of PM programming on the x86 CPU
architecture.

using existing fence operations (e.g.,SFENCE). Note that an unordered �ush may not be written

to persistent memory before a crash, so fences are required for durability. Consider Listing 2.1,

which allocates two integers in persistent memory and issues ordered writes to the integers. In

order to guarantee that the write tox (line 4) is ordered before the write toy (line 8), a �ush and

fence must occur between the updates (line 5 and line 6). To ensure that the write toy (line 8) is

durable, a �ush and fence must occur after the write (line 5 and line 6).

The x86 Instruction Set Architecture (ISA) provides two �ush instructions:CLFLUSHOPTand

CLWB. CLWBdiffers from CLFLUSHOPTin that CLWBhints the CPU to keep the cache line in the

cache whereasCLFLUSHOPTdoes not. x86 provides two fence instructions:MFENCE, which orders

all loads, stores, and �ushes; andSFENCE, which orders all stores and all �ushes. Additionally,

x86 providesCLFLUSH, which acts as both a �ush and fence for a speci�c cache line (i.e., only

orders the �ush that theCLFLUSHitself issues, otherCLWBandCLFLUSHOPTinstructions must be

ordered by a separate fence). Finally, x86 allows non-temporal stores, which bypass the cache and

thus do not require a �ush but do require a fence for durability. Note that the classi�cation of PM

instructions into �ush and fence operations is not x86-speci�c. For example, ARM provides �ush

(e.g.,DC CVAP) and fence (e.g.,DSB) operations [7, 135] with similar semantics to x86 �ushes and

fences.

2.2.2 Challenges of Detecting Persistent Memory Bugs

PM interfaces for durability and performance are easy to misuse [103, 104] and the resultingper-

sistencebugs (i.e., misuses of persistence instructions) can be challenging to detect. Persistence

bugs exhibit many characteristics that make them dif�cult to detect. First, �nding a persistence

bug requires identifying whether PM cache-lines are dirty, but the x86 ISA does not provide a

mechanism to determine the state of a cache-line. Thus, detecting a persistence bug requires mod-

eling PM state and instrumenting the program for tracking state updates, which is challenging to

12

Project Missing Flush/Fence Extra Flush/Fence Other Total
PMDK 49 6 2 57
PMTest 1 1 1 3
XFDetector - - 3 3
Total 50 6 7 63

Table 2.1: Bug Survey. The results of our initial PM bug survey conducted on bugs reported in
PMDK [32] and on bugs discovered by PMTest [104] and XFDetector [103].

accomplish using traditional debugging tools. Second, in the case of correctness bugs, the root

cause and symptoms of a durability bug are often loosely tied together: while the symptoms of a

correctness durability bug is only revealed after a crash, the PM misuse (i.e., the root cause) may

be hundreds of thousands of instructions before the crash even occurred. Finally, persistence bugs

are easily masked by other system behavior. For example, �ushes which are redundant in one

execution path of the program may be necessary under a slightly different execution path, while

correctness durability bugs may be masked by the CPU when evicting a dirty cache-line from its

cache.

Unfortunately, developers cannot solely rely on PM frameworks (e.g., PMDK [32]) to prevent

these bugs. As we show in §2.3, many applications use PM libraries incorrectly and even these

established libraries themselves may misuse PM.

2.3 Persistent Memory Bug Study and Classi�cation

In this section, we present a study of PM bugs. We construct a corpus of 63 PM bugs from

a mature PM library, Intel's PMDK [32], and persistence bugs from PM projects (PMFS [43]

and Redis-pmem [33]) that were found by state-of-the-art PM bug detection tools (PMTest [104]

and XFDetector [103]). We chose PMDK because it is a mature project with a thorough issue

tracker [75] representing a large collection of existing bugs. We use this corpus to identify common

patterns of PM bugs.

Table 2.1 shows a summary of our results2. Overall, we �nd that two application-independent

PM patterns explain the vast majority (56/63 bugs) of the reported persistence bugs. We �nd that

PM bugs can result in either correctness problems, which may lead to data corruption, or perfor-

mance problems. In particular, themissing �ush/fencepattern, in which an update to persistent

memory is missing subsequent �ush and/or fence operations, accounts for 50/63 bugs and can lead

to either correctness or performance issues. Theextra �ush/fencepattern, in which a cache-line is

2We provide a link to our bug study results in the AGAMOTTO GitHub repository:https://github :com/
efeslab/agamotto/blob/artifact-eval-osdi20/artifact/README :md

13

1 // oid is a pointer to PM
2 if (if_free != 0) {
3 * oid = NULL;
4 // BUG: missing flush and fence
5 }

Listing 2.2: Missing Flush/Fence Bug Example.A missing �ush/fence correctness bug adapted
from PMDK Issue #1103, PR #3907.

redundantly �ushed or a fence instruction is issued that is not needed for PM durability, accounts

for 6/63 bugs and leads to performance degradation. The remaining 7 are caused by application-

speci�c violations, most of which involve a misuse of the PMDK transaction API. Note, our study

may be biased towards bugs that are detectable by existing PM bug detection tools, because PMDK

developers extensively usepmemcheck [31] to detect bugs. In the rest of this section, we present

examples of these bugs together with more detailed descriptions.

2.3.1 Missing Flush/Fence Pattern

The most common bug pattern in the bugs in our study is the missing �ush/fence pattern, in part

because PMDK developers extensively usepmemcheck [31] which identi�es this pattern of PM

misuse. In this bug pattern, an update to PM is not made durable because it is missing a subsequent

�ush and/or fence operation. An example of the pattern is shown in Listing 2.2. Here, a pointer to

persistent memory,oid , is not �ushed whenif free != 0 . If the program crashed and restarted,

the pointer might point to its old value, which could lead to rogue writes or malformed data reads.

This bug is �xed by adding proper �ush and fence operations after the modi�cation.

In contrast, the missing �ush/fence pattern is detectable without any application-speci�c infor-

mation. In our study, instances of the missing �ush/fence pattern are correctness issues, where the

program is unable to recover from a crash similar to the one in Listing 2.2. In our evaluation (§2.6),

we also found instances of the missing �ush/fence pattern which are performance bugs. In these

instances, an application uses persistent memory to store volatile data, which hinders performance

due to the higher latency of PM accesses relative to DRAM accesses. Existing studies suggest that

placing volatile data in PM can decrease application performance by as much as 5% [42]. There

are PM data structures that intentionally include this pattern [106] as a programming simpli�ca-

tion. However, in the applications included in our study and evaluation, all instances of the missing

�ush/fence pattern are persistence bugs.

2.3.2 Extra Flush/Fence Pattern

The other common pattern of persistent memory misuse which we identify in our study is the

14

1 // array is an array of integers in PM with length = size
2

3 // resizes array in-place
4 resize_array(array, new_size);
5

6 // if size >= new_size, no copying occurs
7 for (size_t i = size; i < new_size; i++) {
8 array[i] = 0;
9 }

10

11 // BUG: when new_size < size, underflow!
12 for (size_t i = 0; i < new_size - size; ++i) {
13 clwb(array[i + size])
14 }
15

16 sfence();

Listing 2.3: Extra Flush/Fence Bug Example. An extra �ush/fence performance bug adapted
from PMDK Issue #1117, PR #3860.

extra �ush/fence pattern. In this pattern, a cache-line is redundantly �ushed, or a fence instruc-

tion which is not needed for PM durability is executed. An example of this is shown in List-

ing 2.3. In this example, an array located in persistent memory is resized in-place using the call

to resize array , new elements are initialized to 0, and new elements are �ushed to persistent

memory. However, when the size of the array is reduced (i.e.,new size < size), an under�ow in

line 12 causes unnecessary �ushes and leads to a performance degradation [26, 119, 152, 165] (e.g.,

an additional �ush and fence can add an average of 250ns (nanoseconds) of latency [105, 154],

where the base latency of uncached PM accesses can be as low as 96ns [77]).

Similar to the missing �ush/fence pattern, the extra �ush/fence pattern is detectable without any

application-speci�c information. The extra �ush/fence pattern results in performance degradation.

As �ush and fence instructions are used in non-PM contexts (e.g., fences provide semantics for

memory consistency), there may be instances of this pattern that are not persistence bugs. However,

in the applications in our study and evaluation, all instances of the extra �ush/fence pattern are

persistence bugs.

2.3.3 Other Bugs

The remaining 7 bugs in the study are application-speci�c; i.e., in these cases, data is correctly

�ushed to PM and there are no redundant �ush operations, but the application misuses PM, leading

to performance or correctness issues. For example, Listing 2.4 depicts a bug adapted from the

memory pool allocator in PMDK which results in a correctness issue. In order to recover from a

crash, the values inheader andpool must be consistent; however a crash at line 7 will result in

15

1 // store pool�s header
2 / * BUG: header made valid before pool data made valid * /
3 header = ...
4 clwb(header);
5 sfence();
6

7 pool = ...
8 clwb(pool);
9 sfence();

Listing 2.4: Ordering Bug Example. An example correctness bug adapted from PMDK Issue
#14.

an updated value ofheader without an updated value ofpool .

2.3.4 Summary and Insights

We summarize several key results we obtained and the insights we gathered from this bug study

which inform AGAMOTTO's design decisions.

• The missing �ush/fence and extra �ush patterns are prevalent (56/63 of the bugs we found)

and application-independent. Hence, an automated approach (i.e., requiring little to no de-

veloper effort or source modi�cation) could and should be used to detect them across a

variety of platforms.

• In our study, all instances of the missing �ush/fence and extra �ush/fence patterns are per-

sistence bugs; we hypothesize that this trend will hold for general PM applications. In our

evaluation (§2.6), we �nd that all instances of these patterns are persistence bugs across a

variety of PM libraries and applications (i.e., we �nd no false positives with these patterns).

• The remaining bugs, while less prevalent in our survey, are still potential sources of data

inconsistency or application inef�ciency. An ideal tool should allow developers to specify

application-speci�c patterns without requiring extensive test cases and signi�cant developer

annotations.

2.4 Design

In this section, we describe the design of AGAMOTTO. AGAMOTTO aims to achieve four high-level

design principles:

16

Figure 2.1: Components of AGAMOTTO . Green-shaded boxes are AGAMOTTO-speci�c contri-
butions to the existing symbolic execution engine.

Automation: Bug-�nding can take a substantial amount of developer effort [111, 138]; AG-

AMOTTO aims to automate as much as possible to reduce this burden. For example, AGAMOTTO

is non-intrusive (i.e., requires no source-code modi�cations) and leverages basic test cases (e.g.,

existing unit tests or example code) to explore execution paths in an application.

Generality: AGAMOTTO can test any PM application, regardless of what PM libraries or APIs

that the PM application uses.

High Accuracy: AGAMOTTO aims to report no false positives (i.e., reporting a bug where there

is none) while also reducing false negatives (i.e., failure to �nd a bug).

Extensibility: AGAMOTTO can be easily extended to �nd application-speci�c bugs.

The major components of AGAMOTTO are shown in Figure 2.1 (green-shaded boxes represent

the key components unique to AGAMOTTO). AGAMOTTO relies on an existing symbolic execution

engine (KLEE [12] in our prototype) to explore the state space of a PM program. During this

exploration, AGAMOTTO uses a custom PM memory model (Figure 2.1, Step A) to express and

track updates to persistent memory regions (i.e., writes, �ushes and fences). Since AGAMOTTO

tracks PM symbolically, it does not need access to PM resources in order to detect persistence bugs

in a PM application. As AGAMOTTO explores the state space of the program, it checks for PM

bugs using universal bug oracles (Figure 2.1, Step B), as well as any custom bug oracles that users

may provide. Universal oracles check for the missing �ush/fence pattern and the extra �ush/fence

patterns of PM misuse identi�ed in our study. Custom oracles can check for application-speci�c

bugs, which may be correctness bugs (e.g., ordering bugs) and/or performance bugs (e.g., redun-

dant transaction operations) akin to prior work [103, 104].

At the heart of AGAMOTTO lies its PM-aware state space exploration algorithm (Figure 2.1,

Step C), which is effective in steering symbolic execution towards program locations that exercise

PM. In symbolic execution, inputs are symbolic (unconstrained) values in a program's initial state.

17

When the program reaches a branch depending on symbolic input, the current state is forked and

the constraints on input are updated depending on the branch condition. As states increase by

forking, symbolic execution needs to employ a state-space exploration strategy. Existing state

space exploration strategies, such as maximizing code coverage, are not optimized for �nding PM

bugs, and thus waste resources exploring uninteresting paths.

Instead, before symbolically executing the program, AGAMOTTO uses a custom static analy-

sis to determine instructions that can modify persistent memory. AGAMOTTO then uses a back-

propagation algorithm to assign a weight to each instruction equal to the number of PM-modifying

instructions that are reachable from that instruction. AGAMOTTO prioritizes exploring the program

state whose currently-executed instruction has the highest such weight. We �nd that the number of

PM-modifying paths is much smaller than the total number of execution paths in practice, allowing

AGAMOTTO to thoroughly explore the set of executions that lead to persistence bugs (see §2.6).

When AGAMOTTO's oracles detect a bug during state space exploration, AGAMOTTO relies on

its underlying symbolic execution engine to invoke a constraint solver and determine the inputs

that led to the bug, thereby creating a test case that a developer can use for debugging.

In the rest of this section we provide details regarding the key components of AGAMOTTO.

2.4.1 Persistent Memory Model and Persistent Memory State Tracking

AGAMOTTO facilitates persistence bug detection by tracking the state of persistent memory objects

in the program. For each PM allocation, AGAMOTTO tracks constraints on thedurability stateof

the allocated cache lines. The durability state of a cache-line indicates whether the cache line

is dirty (i.e., modi�ed), pending(i.e., updates to the cache line are �ushed but not ordered) or

clean(i.e., updates to the cache line are both �ushed and ordered). As AGAMOTTO symbolically

executes, it updates constraints on the durability state of PM cache-lines to re�ect the behavior of

the program. AGAMOTTO uses these constraints to identify execution paths that contain durability

bugs (i.e., when redundant �ushes are issued, or updates are not properly ordered).

Identifying Persistent Memory Allocations In order to be application-agnostic and automated,

AGAMOTTO tracks persistent memory allocations from the system level, rather than tracking

high-level calls to persistent memory allocators (e.g.,pmemalloc) [104]. Tracking PM allo-

cations at a system level trades off performance in favor of automation, since this approach over-

approximates PM allocations. AGAMOTTO marks all opened �les that match a user-speci�ed per-

sistent memory device regular expression (e.g.,pmem/*) as PM �les and treats memory-mappings

of PM �les as persistent memory objects.

18

Tracking Persistent Memory State When AGAMOTTO symbolically executes an instruction

that operates on a PM object, it generates constraints on the durability state of the cache-lines

that comprise the memory objects. A store instruction (e.g., x86MOV) adds a constraint that the

destination of the store is in the dirty state. Flush instructions (e.g.,CLWBand CLFLUSHOPT)

generate a constraint that denotes that the destination is in the pending state. Non-temporal stores

(e.g., x86MOVNTare similar to regular stores, except their destination is immediately put into

the pending state (i.e., non-temporal stores are treated as a store+�ush), as non-temporal stores

bypass the CPU cache but are weakly ordered (like �ush instructions) and still require some form

of memory fence. Global fences (e.g.,SFENCE, MFENCE) add constraints to indicate that all PM

cache lines are clean, whereas cache-line fences (e.g.,CLFLUSH) add a constraint denoting that

their destination is clean.

2.4.2 Persistence Bug Oracles

AGAMOTTO uses the persistent memory state in order to support two types of persistence bug

oracles. First, AGAMOTTO provides two built-inUniversal Persistence Bug Oracles, which check

for bugs based on the patterns we identify in our initial study (§2.3). Second, AGAMOTTO allows

developers to specify custom, application-speci�c persistence bug oracles, which we have used to

provide two oracles for PMDK's transaction API [32].

2.4.2.1 Universal Persistence Bug Oracles

AGAMOTTO provides two universal persistence bug oracles, one that detects an instance of the

missing �ush/fence bug pattern (indicating a correctness or performance bug), and one that detects

an instance of the extraneous �ush/fence bug pattern (indicating a performance bug). We sketch

the algorithms in Listing 2.5. AGAMOTTO reports a missing �ush/fence bug for each cache-line

in a persistent memory object that is not clean (i.e., the constraints on the persistent state indi-

cate that the cache-line may be dirty or pending) at the time when the persistent memory is no

longer addressable (due to eithermunmapor program exit). AGAMOTTO identi�es an extrane-

ous �ush/fence operation bug on any �ush (i.e.,CLFLUSH) to a cache-line which must already be

pending or clean based on the constraints on the persistent state. AGAMOTTO also identi�es an

extraneous �ush/fence bug on any fence (e.g.,SFENCEor MFENCE) which has no pending �ushes

to mark clean. For both of these oracles, AGAMOTTO reports program location information (e.g.,

stack frame and source code location) for the most recent update to each cache line that violates

the conditions checked by the oracle. In our evaluation (see §2.6), we show that these oracles do

not incur any false positives across a variety of PM frameworks and applications.

19

1 # Unflushed Bug Oracle
2 def check_unflushed(state):
3 for pm_obj in state:
4 foreach cacheline in pm_obj if not cacheline.is_clean:
5 raise error(correctness)
6

7 # Extra Flush/Fence Bug Oracles
8 def check_extra_flush(state, cacheline):
9 if cacheline in state is clean:

10 raise error(performance)
11 def check_extra_fence(state):
12 if state has no pending updates:
13 raise error(performance)
14

15 # Call Oracles on instructions:
16 def executeInstruction(state, inst):
17 if (state.terminated or state.unmapped):
18 check_unflushed(state)
19 if inst is flush:
20 check_extra_flush(state, inst.cacheline)
21 do_flush(inst.cacheline)
22 if inst is fence:
23 check_extra_fence(state)
24 state.commit_pending()

Listing 2.5: Universal Persistence Bug Oracles.Pseudo-code for Universal Persistence Bug
Oracles and how they are used as AGAMOTTO explores the state space.

2.4.2.2 Custom Bug Oracles

In addition to the generic bug oracles, AGAMOTTO facilitates the use of custom bug oracles. Cus-

tom bug oracles are de�ned separately from the application, which allows them to be versatile tools

for detecting application-speci�c bugs. For example, a developer might use a custom oracle to val-

idate the correct usage of PM frameworks (e.g., identifying duplicate log entries in the PMDK

transaction log) or assert that certain structures are operated on in the correct way (e.g., checking

that PM referenced asstruct foo is only ever modi�ed in a PMDK transaction). Custom bug

oracles de�ne a function that takes as input an explored program state (i.e., the current state of

symbolic memory and variables in the program) and an instruction; after each instruction is exe-

cuted within this state, AGAMOTTO calls all con�gured custom bug oracles. We provide two case

studies on designing and implementing custom oracles, which we use to �nd 4 application-speci�c

bugs that were reported by prior work and 1 new application-speci�c bug. Both of the custom

oracles that we present are precise, i.e., they do not introduce false positives. We describe them at

a high-level below, then discuss their implementation in §2.5.

20

1 class PmemObjTxAddChecker : public CustomChecker {
2 bool in_tx;
3 // [address, address+size)
4 typedef pair<ref<Expr>, ref<Expr>> TxRange;
5 list<TxRange> added_ranges;
6

7 void checkTxBegin(Function * f, ExecutionState &state) {
8 if (!in_tx && f->getName() == "pmemobj_tx_begin") in_tx = true;
9 }

10

11 void checkTxAdd(Function * f, ExecutionState &state) {
12 if (f->getName() != "pmemobj_tx_add_common") return;
13 // 1. Get the address from the stack.
14 ref<Expr> address = f.getArgument(0);
15 ref<Expr> size = f.getArgument(1)
16 // 2. Get end bound
17 auto r_end = address + size;
18 auto new_range = TxRange(address, r_end);
19 // 3. Check for overlaps.
20 // If overlap, there�s a bug!
21 if (overlaps(state, new_range))
22 reportError(state, RedundantTxAdd);
23 // 4. Add the new range.
24 added_ranges.push_back(new_range);
25 }
26

27 void checkTxEnd(Function * f, ExecutionState &state) {
28 if (f->getName() == "pmemobj_tx_end") in_tx = false;
29 }
30

31 public:
32 PmemObjTxAddChecker(...) {...}
33 // This is the entry point
34 virtual void operator()(ExecutionState &state) override {
35 checkTxBegin(getFunction(state), state);
36 checkTxAdd(getFunction(state), state);
37 checkTxEnd(getFunction(state), state);
38

39 if (!in_tx) added_ranges.clear();
40 }
41 };

Listing 2.6: Custom Oracle Example.A pseudo-code example of a custom oracle, designed to
check for redundant PMDK transaction “adds” (i.e., redundant log updates).

21

Redundant Undo Log Oracle This oracle checks to ensure that data does not get logged in

PMDK's undo log mechanism multiple times. We show a pseudo-code example of an oracle in

Listing 2.6. PMDK's transaction API implements an undo log which is used to back up data

before it is modi�ed—if a transaction is interrupted by a program error or a crash, the data can be

recovered from the log. A misuse of this API, however, can lead to redundant entries being created

in the undo log, which degrades performance. To track these errors, this oracle keeps track of

transaction boundaries (TX BEGIN, TX END) and the memory ranges backed up in the undo log. If

overlapping memory ranges are added during a single transaction, the oracle signals a performance

bug. We use this oracle to reproduce the application-speci�c performance bug found by PMTest in

PMDK's example BTree data structure.

Atomic Operation Oracle This oracle ensures that a developer-speci�ed structure is crash-

recoverable through correct use of a PMDK transaction. In particular, the oracle veri�es that the

structure is only updated within a PMDK transaction and is properly added to the PMDK undo log.

We used this oracle to �nd 3 existing bugs; 2 in the PMDK Atomic Hashmap and 1 in Redis-pmem.

2.4.3 Persistent Memory-Aware Search Algorithm

AGAMOTTO uses symbolic execution to explore the state space of the program. In order to ana-

lyze large persistent memory applications, AGAMOTTO prioritizes exploring program states that

are most likely to modify persistent memory using a PM-aware search algorithm. We now �rst ex-

plain the static analysis that AGAMOTTO uses to compute exploration priorities. We then explain

the operation of AGAMOTTO's state space exploration and why AGAMOTTO's approach is more

effective at �nding persistence bugs than traditional coverage-guided exploration heuristics.

2.4.3.1 Whole-Program Static Priority Computation

The goal of AGAMOTTO's static analysis is to determine the number of reachable PM-modifying

instructions from each instruction in the program. That way, AGAMOTTO can guide symbolic

execution towards program locations that are expected to access PM heavily, and uncover more

bugs. This technique can be effective as the number of overall instructions expected to modify PM

is much smaller than the number of instructions which modify volatile memory [118].

To achieve this, AGAMOTTO �rst identi�es all PM-modifying instructions in the program by

leveraging a sound, whole-program (i.e., interprocedural) pointer analysis [5, 21, 61, 62]. The

analysis maps each pointer in the program to a set of memory locations; soundness guarantees

that any two pointers which may alias will have a non-empty intersection of these sets of memory

locations.

22

1 char * pbuf = mmap(<PM file>);
2 ... // (# of PM-modifying instructions)
3 do_read = / * user input * / ; // (2)
4 if (do_read) { // (0)
5 a = pbuf[x]; // (0)
6 foo(); // (0)
7 } else { // (2)
8 a = / * user input * / ; // (2)
9 pbuf[x] = a; // (2)

10 clwb(pbuf[x]); // (1)
11 // BUG: Missing sfence!
12 }
13 exit(0); // (0)

Listing 2.7: Priority Calculation Example. An example of AGAMOTTO's static analysis. All
PM-modifying instructions are highlighted. Each instruction is annotated with a comment which
denotes the result of the priority calculation.

AGAMOTTO then determines whether a given memory location may have been allocated as

persistent memory. To do this, AGAMOTTO conservatively assumes that allmmapcalls which

accept a non-negative or variable �le descriptor may return a pointer to persistent memory. While

this approach over-approximates the persistent memory allocated by the program, as we show in

§2.6, it accelerates persistence bug �nding compared to default exploration strategies. Note that

this conservative approach only affects the PM-aware search strategy, it does not introduce false

positives in AGAMOTTO's PM state tracking.

Then, AGAMOTTO classi�es each instruction in the program as a persistent memory-modifying

instruction if the instruction is a global fence (e.g.,SFENCE), or, a store (e.g., x86MOV), cache-

line �ush (e.g.,CLWB), or cache-line fence (e.g.,CLFLUSH) that may point to a persistent memory

location.

AGAMOTTO only computes points-to information for pointers which may alias PM. For shared

libraries, AGAMOTTO �rst statically links the binary, then computes the alias information. If the

shared library is used to modify PM (i.e., has some shared memory modi�cation function which is

used to modify PM), then that part of the shared library code will be analyzed.

Finally, AGAMOTTO uses a back-propagation algorithm to calculate the number of reachable

PM-modifying instructions for each program location. AGAMOTTO iterates through the interpro-

cedural control �ow graph from the exit points in the program (e.g., calls toexit or return from

main) to the �rst instruction in the program. For each instruction, AGAMOTTO assigns thepriority

of the instruction to be the sum of theweightof the current instruction (1 if the current instruction

is a PM-modifying instruction, 0 otherwise) and the maximum number of reachable PM-modifying

instructions from the current instruction.

We show a small example of this priority computation in Listing 2.7, where each instruction is

23

Figure 2.2: State Space Exploration Comparison.State space exploration with two strategies:
(1) KLEE-Default (based on code coverage), (2) AGAMOTTO's priority-driven exploration. This
example corresponds with the bug described in Listing 2.7.

annotated with the result of the priority calculation. Each PM-modifying instruction (pbuf[x] =

a andclwb(pbuf[x])) adds 1 to the priority and the priorities are back-propagated to the entry

point (Line 3).

2.4.3.2 State Exploration Strategy

AGAMOTTO relies on an existing symbolic execution engine, KLEE [12], to explore the possible

states of the program. Symbolic execution starts with an initial program state which contains a

current statement (similar to a program counter), a symbolic memory (where memory values are

unknown), and symbolic inputs (e.g., an unknowninteger value). As the program statements are

symbolically executed, the symbolic execution engine simulates the effects of the program state-

ments on symbolic inputs and memory, and updates explored program state accordingly. Moreover,

the symbolic execution engine forks the explored state into two every time a branch that depends

on symbolic values is encountered.

After executing a program statement in an explored state, the symbolic execution engine selects

a new state to advance next. When selecting a state to explore, AGAMOTTO chooses the state

whose current statement has the highest statically-computed aggregate priority (i.e., number of

reachable PM-modifying statements from the current instruction).

Figure 2.2 shows an example of state space exploration for the the example code snippet List-

ing 2.7, where the state containingdo read at the top represents the initial state of the program

and the buggy state where the program omitted anSFENCEinstruction is in theelse path. For

brevity, foo is depicted as a single statement that is explored at once.

The KLEE-Default strategy, which is a breadth-�rst exploration strategy augmented by ran-

24

domized, coverage-guided prioritization, may explore states that are not useful to detecting the

bug. When applied to the code in Listing 2.7, the KLEE-Default exploration strategy will explore

the state in theif branch for a single statement (a = pbuf[x]) and switch to the state in the

else branch for another statement (a = ...). This cycle will repeat once more in theif branch

(foo()) and in the else branch (pbuf[x] = a , clwb(pbuf[x])); exploration will reach the bug

in a total of 4 state transitions.

AGAMOTTO, on the other hand, directly explores theelse branch because its static analysis

assigns theelse branch a high aggregate priority. Consequently, AGAMOTTO can discover the

bug with a single state transition.

Although the number of explored states in our example is small, in practice, the number of

states in a program is exponential in the number of branches that depend on symbolic input. Con-

sequently, AGAMOTTO's exploration strategy allows it to discover many more bugs compared to

KLEE's default strategy, as we demonstrate in §2.6.

2.5 Implementation

AGAMOTTO comprises a persistent memory model (� 400 Lines of Code (LOC) of C++), a static

analysis component (� 2600 LOC of C++), and a state space exploration component (� 100 LOC

of C++) built atop KLEEE [12]). AGAMOTTO also provides 2 custom bug oracles for validating

the use of the PMDK transaction API (� 180 LOC of C++ for both oracles and� 200 LOC of C++

for shared custom oracle API functions).

Running real-world complex PM applications also required expanding KLEE by� 4000 LOC

of C++. These additional changes were primarily to theenvironment model, which symbolically

simulates syscalls and operating system facilities, such as a �le system. AGAMOTTO targets the

Intel x86 ISA since it is the most broadly-used platform for PM programming. Hence, AGAMOTTO

adds support to KLEE for interpreting PM-speci�c x86 instructions (e.g.,CLWB). Supporting a

different ISA or persistency model [64, 86, 128] simply requires identifying the �ush and fence

operations in the ISA. In addition, AGAMOTTO adds to KLEE support for common inline assembly

functions such as atomic instructions, as well as porting an extensive environment model for multi-

threading (i.e., POSIX threads) from Cloud9 [24], which was built on an older version of KLEE.

AGAMOTTO adds support for symbolic �les to model and track the state of mapped persistent

memory and anonymous symbolicmmap. Finally, AGAMOTTO adds symbolic socket traf�c to the

environment model, which allows an application to receive symbolic input over a socket. Symbolic

socket traf�c allows AGAMOTTO to model client applications that send commands to a server

process.

Developing an automated bug �nding tool for persistent memory presents key challenges. To

25

identify persistent memory allocations in a PM framework agnostic way without relying on devel-

oper annotations, AGAMOTTO tracks allocations at the system level (e.g., calls to map a persistent

memory �le). This represents a signi�cant divergence from KLEE, which tracks allocations at the

libc interface (e.g.,malloc andfree), and introduces performance challenges. Applications of-

ten allocate megabytes (MBs) or GBs of PM, but KLEE is optimized for tracking memory objects

that are kilobytes (KBs) in size; treating each PM mapping as a single memory object leads to

poor performance when KLEE solves constraints. Instead, AGAMOTTO carefully partitions PM

into separate, yet logically adjacent, objects (empirically, we �nd 16 KB chunks to balance the

trade-off between solver time and management overhead). AGAMOTTO also tracks the set of live

PM objects to reduce time resolving symbolic addresses for global fence operations.

AGAMOTTO supports custom persistence bug checkers with a simple yet powerful interface.

Speci�cally, a developer implements a method that takes as input the state being explored symbol-

ically and asserts pre- and post- conditions on the state of persistent memory based on an under-

standing of how their application should behave. AGAMOTTO provides a library of basic utilities

(e.g., error reporting, calls to the symbolic solver) that comprise� 200 LOC and allows bug ora-

cles to use type information provided by LLVM. AGAMOTTO provides 2 custom oracles to detect

application-speci�c PM bugs in PMDK and Redis (§2.4.2.2). We implement theRedundant Undo

Log Oraclein 96 LOC and less than a day of developer effort. TheAtomic Operation Oracleex-

tends the Redundant Undo Log Oracle—it comprises an additional 86 LOC on top of the inherited

functionality and also took less than a day to implement.

2.6 Evaluation

In this section, we evaluate the effectiveness and usefulness of AGAMOTTO. We start by giving

an overview of the 84 new bugs AGAMOTTO has found3 and the insights we gather from them

(§2.6.1). We also discuss the positive responses that we have received after reporting bugs to PM

application developers (§2.6.2). We then evaluate the performance of AGAMOTTO and how our

novel search tactic compares to the default symbolic execution search strategy in KLEE (§2.6.3).

Evaluation Targets We evaluate AGAMOTTO by testing representative state-of-the-art PM-

application and libraries consistent with the libraries and applications tested by prior work [103,

104]. We evaluate AGAMOTTO on two PM libraries. First, we test the PMDK [32] library from

Intel, the most active and well-maintained open-source PM project, which has been maintained

for over 8 years. Consistent with existing tools [104], we use example data structures provided

3We provide a link to our evaluations results in the AGAMOTTO GitHub repository:https://github :com/
efeslab/agamotto/blob/artifact-eval-osdi20/artifact/README :md

26

with PMDK (e.g., BTree, RBTree and Hashmap implementations) and an application provided by

Intel [37] as drivers for our testing. In addition to PMDK, we test NVM-Direct [11], a PM library

developed by Oracle. To drive our testing of NVM-Direct, we use their example test application

they provide for demonstrating the API.

We additionally evaluate AGAMOTTO by testing three real-world PM applications. We test

Redis-pmem, a port of Redis, a popular in-memory database and memory caching service, to

PMDK that is maintained by Intel. We likewise select memcached-pm, a port of memcached, a

popular high-performance memory caching server, to PMDK developed by Lenovo. Finally we

test RECIPE's P-CLHT index, a state-of-the-art persistent index representing a research prototype.

Note, we only test the P-CLHT index from RECIPE because the other four indices all use a volatile

allocator which prevents crash-consistency. Since KLEE symbolically emulates system calls with-

out running real kernel code, we are unable to test PMFS [43], an evaluation target that has been

considered by prior work [104].

We test each application by providing a symbolic environment model (e.g., providing symbolic

arguments and �les with symbolic contents) rather than instrumenting the source code to create

symbolic variables. We test RECIPE's P-CLHT index using their example application, which

manipulates the basic structure of the index through standard insertion, deletion, and lookup op-

erations. We use symbolic socket traf�c (see §2.5) to test the Redis-pmem and memcached-pm

server daemons using partially symbolic packets (i.e., packets with some concrete values, like the

Redis command string, with symbolic values for the keys and values).

When testing applications that use PMDK (PMDK, Redis-pmem, and RECIPE), we enable both

universal bug oracles and our two custom bug oracles designed for PMDK (see §2.4.2.2). When

testing NVM-Direct, we only use the universal bug oracles.

When using AGAMOTTO to test an application, AGAMOTTO also tracks all persistent memory

use from the libraries used by the application. In the case that AGAMOTTO �nds a bug in PMDK

while testing an application which uses PMDK (e.g., memcached-pm, Redis-pmem, or RECIPE),

we report the bug as a bug in PMDK.

Evaluation Setup We ran our experiments across two servers, one with a Intel(R) Xeon(R) Sil-

ver 4114 CPU @ 2.20GHz and one with a Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. Each

individual experiment (a single run of AGAMOTTO) was limited to a max of 10 GB of DRAM and

1 hour of runtime. We show our software con�guration in Table 2.2. Note that none of our ex-

periments use persistent memory hardware since AGAMOTTO symbolically models all interactions

with persistent memory.

27

System Source (GitHub) Version
PMDK pmem/pmdk v1.8
RECIPE utsaslab/RECIPE/tree/pmdk53923cf
memcached-pm lenovo/memcached-pmem 8f121f6
NVM-Direct oracle/nvm-direct 51f347c
Redis-pmem pmem/pmem-redis cc54b55

pmem/redis v3.2

Table 2.2: Tested Software Versions.Software con�gurations we test with AGAMOTTO; note
that we tested two different PM versions of Redis-pmem.

MC MP EP AS Total
System N K N K N K N K N K
memcached-pm 1 - 19 - 1 - - - 21 -
NVM-Direct 7 - 7 - 9 - - - 23 -
PMDK 1 1 14 - 6 - 1 3 22 4
RECIPE 1 - 7 - 6 - - - 14 -
Redis-pmem 3 - 1 - - - - 1 4 1

Total 13 1 48 - 22 - 1 4 84 5

Table 2.3: Bugs Found By AGAMOTTO . The bugs found using AGAMOTTO. For each bug
class (MC: Missing �ush/fence Correctness,MP: Missing �ush/fence Performance,EP: Extra
�ush/fence Performance, andAS: Application-Speci�c), we report the number of new bugs AG-
AMOTTO found,N, and the number of bugs detected that were previously known,K.

2.6.1 Overview

We show a summary of our bug-�nding results in Table 2.34. Overall, AGAMOTTO found 84 new

bugs across our 5 main test targets: 62 missing �ush/fence bugs (13 correctness bugs and 48 per-

formance bugs), 22 extra �ush/fence performance bugs and 1 new application-speci�c correctness

bug. We also detect all 5 persistence bugs found by prior work in user-space applications and

con�rm that we �nd no false positives with our universal or custom oracles. Here, we describe the

bugs that we �nd in greater detail.

Missing Flush/Fence Bugs Using our built-in un�ushed bug oracle, we found 62 new bugs;

we manually identi�ed that 13 are correctness bugs and 48 are performance bugs. Of the 13

correctness bugs, 10 are caused by missing �ushes and 3 are caused by missing fences—all of the

missing fence bugs are found in Redis-pmem. AGAMOTTO found the missing �ush/fence bug in

4We provide the full detailed table in an online table available here:https://github :com/efeslab/
agamotto/tree/artifact-eval-osdi20/artifact#resources .

28

PMDK that was reported by PMTest. Of the correctness bugs, AGAMOTTO �nds 1 in memcached-

pm, 1 in PMDK, 1 in RECIPE's P-CLHT index, 7 in NVM-Direct, and 3 in Redis-pmem. Of the

performance bugs, AGAMOTTO �nds 19 in memcached-pm, 14 in PMDK, 7 in RECIPE's P-CLHT

index, 7 in NVM-Direct, and 1 in Redis-pmem.

Extra Flush/Fence Bugs We found 22 new bugs using the extra �ush/fence bug oracle. Of

these bugs, AGAMOTTO found 9 in NVM-Direct, 6 in PMDK library functions and 6 in RECIPE's

P-CLHT index.

Application-Speci�c Bugs AGAMOTTO identi�ed 1 new application-speci�c correctness bug

in the PMDK atomic hashmap example using the extra �ush/fence universal bug oracle. Using

the atomic operation oracle, AGAMOTTO found all 3 application-speci�c correctness bugs which

were reported by XFDetector5 Using the redundant undo log oracle, AGAMOTTO detected the

application-speci�c performance bug in the PMDK example BTree structure that was discovered

by PMTest. AGAMOTTO is unable to �nd the application-speci�c performance bug that PMTest

found in PMFS because AGAMOTTO is unable to execute kernel code.

2.6.2 AGAMOTTO Reporting

We presented our initial results to Intel's PMDK team, Oracle's NVM-Direct team, and to the

authors of RECIPE and received overall positive feedback. At the time of writing, we have not

yet heard back from Lenovo developers regarding bugs in memcached-pm. PMDK developers

con�rmed our �ndings about performance issues. Oracle's developers con�rmed they were aware

of some of the issues we reported and noted that “Resources for software development are always

in short supply, so the open source version of NVMDirect has suffered. I wish it was not so, but

it is. Your email may be the push that gets us to do something about it. Thank you.”6 RECIPE's

authors con�rmed and started patching all the bugs we reported to them and asked us to open-

source AGAMOTTO for continued testing. Despite existing tools for testing PM (one of which was

even built for RECIPE [95]), one of RECIPE's authors stated that “These are some really good

�nds, since it was dif�cult to debug our own code without having a proper tool.”

We conclude that AGAMOTTO has been successful in �nding bugs that developers care about.

29

(a) memcached-pm (b) NVM Direct

(c) PMDK (d) RECIPE

(e) Redis-pmem

Figure 2.3: Bug Detection Comparison.Comparison of the KLEE's default search strategy to
AGAMOTTO's search strategy.

2.6.3 Performance Analysis

Bene�t of A GAMOTTO 's State Exploration Strategy We evaluate AGAMOTTO's state explo-

ration strategy compared to the default search strategy in KLEE. We compare these two strategies

for all of our 5 test targets: memcached-pm (Figure 2.3a), NVM-Direct (Figure 2.3b), RECIPE's

5XFDetector reports 4 new bugs, but one of these bugs is unrelated to persistent memory but detectable with their
fault injection framework.

6Oracle ultimately archived this project around June 2020.

30

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Abstract
	Introduction
	Persistent Memory Background and Challenges
	Limitations of Prior Work
	Thesis Statement and Contributions
	Dissertation Outline

	Agamotto: How Persistent is your Persistent Memory Application?
	Introduction
	Background and Challenges
	Persistent Memory Programming
	Challenges of Detecting Persistent Memory Bugs

	Persistent Memory Bug Study and Classification
	Missing Flush/Fence Pattern
	Extra Flush/Fence Pattern
	Other Bugs
	Summary and Insights

	Design
	Persistent Memory Model and Persistent Memory State Tracking
	Persistence Bug Oracles
	Universal Persistence Bug Oracles
	Custom Bug Oracles

	Persistent Memory-Aware Search Algorithm
	Whole-Program Static Priority Computation
	State Exploration Strategy

	Implementation
	Evaluation
	Overview
	Agamotto Reporting
	Performance Analysis
	Case Study: Persistent Memory Performance Bugs

	Related Work
	Conclusion

	Hippocrates: Healing Persistent Memory Bugs Without Doing Any Harm
	Introduction
	Background and Challenges
	Persistent Memory Programming
	Existing Approaches for Finding Durability Bugs
	Challenges of Automating Fixing Persistent Memory Bugs

	Study of Durability Bugs and Fixes
	Study of Bugs
	Study of Bug Fixes
	Key Insights

	Algorithms and Design of Hippocrates
	Overview
	Hippocrates's Bug Fixes and Proof Sketches
	Intraprocedural Memory Fence Insertion
	Intraprocedural Cache-Line Flush Insertion
	Intraprocedural Flush and Fence Insertion
	Interprocedural Fixes

	Optimization of Hippocrates's Fixes

	Implementation
	Collecting Traces and Identifying Bug Locations
	Implementation of Fixes

	Evaluation
	Effectiveness
	Accuracy
	Performance of Fixes
	Hippocrates's Overhead
	Results Summary

	Discussion
	Related Work
	Conclusion

	Squint: Scaling Persistent Memory Crash-Consistency Testing via Representative Testing
	Introduction
	Background
	Persistent Memory and Persistent Memory Technologies
	Persistent Memory Crash-Consistency Bugs
	(Dynamic) Partial Order Reduction
	Prior PM Crash-Consistency Testing Approaches

	Representative Testing
	Design of Squint
	Tracing PM Operations (Step A)
	Persistence Graph Construction (Step B)
	Subgraph Creation (Step C)
	Grouping Update Behaviors (Step D)
	Model Checking (Step E)
	Limitations

	Implementation
	Evaluation
	Bugs Detected by Squint
	Scalability of Representative Testing
	Coverage Comparison to Pattern-Based Approaches

	Discussion
	Related Work
	Conclusion

	Conclusion and Future Work
	Automatically Finding and Fixing Platform-Specific Bugs
	Automating Semantic State-Space Reduction Policies

	Bibliography

