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1. Motivation
Persistent memory (PM) technologies aim to revolutionize
the storage-memory hierarchy [34, 37]. PM technologies,
such as Intel Optane DC [12, 20], are roughly 8× less ex-
pensive than DRAM [1] and offer disk-like durability with
access latencies that are only 2–3× higher than DRAM laten-
cies [21,26,41,45]. PM can be accessed using the conventional
load and store instructions and thus offers persistence without
needing heavyweight file-system operations. Popular applica-
tions (memcached [13] and Redis [11]) and companies (e.g.,
VMware and Oracle [19]) have already begun employing PM.

Alas, programming PM systems is error-prone [5, 7, 17, 30,
31, 33, 34, 40, 42–44]. Updates to PM are cached in volatile
CPU caches, requiring developers to explicitly flush cache
lines to guarantee that updates are written to PM. Moreover,
cache flushes are weakly ordered on most architectures (i.e.,
flushes do not follow store order), so developers must insert
memory fences to order updates as necessary for crash consis-
tency. The misuse or omission of these mechanisms results in
durability bugs which compromise program correctness. The
challenges of finding these durability bugs have spurred many
works in PM-specific bug finding tools [28, 29, 36, 38].

However, even with these effective PM-specific bug finding
tools, fixing durability bugs in PM systems is still challenging.
In this work, we first analyze 26 bugs reported by Intel’s
own bug finding tool, pmemcheck, and find that these bugs are
arduous to manually debug and fix, even with the help of a
state-of-the-art bug finding tool like pmemcheck. Ultimately,
the PM bugs in our study take on average weeks (23 days) and
up to months (66 days) to fix, and require numerous attempts
(13 commits on average) to produce a complete fix.

We find that fixing PM durability bugs is complicated due
to a key tradeoff between performance and simplicity. Simple
intraprocedural fixes insert a flush or fence in-line with the
store that is missing one, making it easy to reason about the
durability of the application. However, if the intraprocedural
fix is often accessed with volatile data (e.g., adding a flush in
memcpy), the performance of the application suffers. Instead, a
developer will employ a more complicated interprocedural fix,
in which they add flush or fence operations to other functions
in the call stack that resulted in the missing flush. Such a
fix can be more efficient, but are trickier to place correctly
in the program to ensure crash consistency. These tradeoffs
and technical challenges explain why fixing durability bugs is
difficult, even though the fixes are seemingly simple.

It is time to explore methods of fixing PM durability bugs,
as finding these bugs is only part of the challenge.

2. Limitations of the State of the Art

Recent work has developed PM-specific debugging tools,
such as AGAMOTTO [35], PMTest [29], XFDetector [28],
pmemcheck [38, 40], and Persistency Inspector [36, 40]. How-
ever, even with such useful tools, fixing durability bugs in
PM systems is challenging and time-consuming. A plethora
of work focuses on building reliable APIs, libraries, and lan-
guage extensions to make PM programming easier for devel-
opers [2, 4, 6, 10, 14, 15, 18, 44], but durability bugs can still
occur if these mechanisms are misused or contain internal
durability bugs.

There is a long line of research on automated bug fix-
ing [16, 24, 25, 32, 39], some of which is deployed in pro-
duction (e.g., at Janus Rehabilitation [16] and Facebook [32]).
However, these tools are best-effort, meaning that their fixes
cannot always be proven to be safe (i.e., not introduce in-
correct program behavior), making them a poor fit for crash-
consistent PM systems, as buggy patches could lead to data
corruption. Automated bug-fixing systems for specific do-
mains, like AFix [22] and CFix [23] for concurrency bugs,
give stronger guarantees and serve as inspiration for this work.

3. Key Insights

Our main insight is that most PM durability bugs can be safely
fixed with fixes that guarantee correctness (i.e., they do not
hurt program correctness). We define a bug as the possibility
of incorrect program behavior. Then, we show that the mecha-
nisms used to fix PM durability bugs (cache-line flush and/or
memory fence instructions) do not introduce the possibility
of any new program behaviors, and can therefore not cause
any new bugs. Intuitively, this is because a missing durability
instruction does not preclude the effects of that instruction
(e.g., memory pressure can evict arbitrary cache lines without
using an explicit cache-line flush instruction).

4. Main Artifacts

Based on the bug fixes that we analyze in our study, we de-
velop three kinds of fixes that can be applied automatically in
PM systems: (1) intraprocedural fence instruction insertion
(i.e., inserting a fence in-line with an update and flush to PM);
(2) intraprocedural flush instruction insertion (i.e., inserting a
flush in-line with an update to PM); and (3) persistent subpro-
gram creation (i.e., duplicating a function and inserting flushes
and a single memory fence at each exit point to preserve pro-
gram semantics while adding durability mechanisms). We
provide a proof sketch for each class of fix arguing why these



Figure 1: An overview of HIPPOCRATES.

fixes are guaranteed to safely fix the original durability bug
(i.e., fix the bug without creating new bugs).

We then develop HIPPOCRATES, an automated PM bug
fixing tool which applies these fixes. Fig. 1 shows the high
level design of HIPPOCRATES. HIPPOCRATES accepts a PM-
specific execution trace containing data commonly provided
by existing PM bug finding tools (stack trace, etc.); many tools
generate this data by default (e.g., pmemcheck), others can
easily be modified to produce it. HIPPOCRATES first parses
this trace into a tool-independent format (Step 1). Then, HIP-
POCRATES uses the trace to locate the original operation that
causes each bug detected by the bug finder (e.g., the unflushed
store causing a missing flush bug) (Step 2). HIPPOCRATES
then computes all required fixes (Step 3), applies the fixes, and
compiles the modified application (Step 4).

HIPPOCRATES computes fixes using a three-phase process
(Step 3): first, for all bugs, it computes the simplest possible fix
using intraprocedural fixes; second, HIPPOCRATES performs
“fix reduction,” where fixes that are redundant (e.g., flushes
to the same cache line) are merged together; and third, it
performs a heuristic transformation to determine if fixes should
be “hoisted,” i.e., if any intraprocedural fixes (i.e., fixes in-
line with the PM modification) should be converted into an
interprocedural fix (i.e., in a caller function).

We test HIPPOCRATES using both production and research
systems; PMDK (Intel’s Persistent Memory Development
Kit [10]), P-CLHT (a persistent index from RECIPE [27]),
memcached-pm (a PM-port of memcached [31] [13]), and
Redis-pmem (a PM-port of Redis [3] maintained by Intel [11]).
We test PMDK using developer created unit tests, P-CLHT
using an example application provided by the RECIPE authors,
and memcached-pm and Redis-pmem using standard YCSB
workloads [9] using a popular YCSB driver [8].

5. Key Results and Contributions

We use HIPPOCRATES to automatically fix all 23 of the 23
durability bugs we find and reproduce in PMDK [10], P-CLHT
(from RECIPE [27]), and memcached-pm [13]. We man-
ually verify that HIPPOCRATES is able to correctly fix all
the bugs using the bug finding tool that originally found the
bugs (pmemcheck). We compare developer’s fixes and HIP-
POCRATES automated fixes for all bugs where patches are
available (11 PMDK bugs), and find that in most cases (9/11),
HIPPOCRATES fixes are functionally identical to developer

fixes. In the remaining cases (2/11), HIPPOCRATES’s fixes are
functionally equivalent, but the fixes inserted by the PMDK
developers are slightly more machine-portable (i.e., PMDK’s
fix determines which flush instructions are available on the
CPU at runtime).

We show the effectiveness of HIPPOCRATES’s interprocedu-
ral fix heuristic with a case study of Redis-pmem [11]. We test
Redis-pmem against RedisH-full, a version where all flushes
have been automatically inserted by HIPPOCRATES instead
of by a developer, and show that RedisH-full matches or ex-
ceeds the performance of Redis-pmem (up to 7% increase in
throughput on YCSB workloads). In this experiment we also
demonstrate that HIPPOCRATES’s interprocedural fixes are re-
quired to provide good overall fix performance, as RedisH-full
is 2.4–11.7× faster than RedisH-intra, a HIPPOCRATES-fixed
version of Redis which only inserts simple intraprocedural
fixes. We also show that HIPPOCRATES produces fixes with la-
tency comparable to deployed automated bug fixing tools [16],
taking 30 minutes to fix all bugs in Redis and less than 15
minutes on all other systems we test.

Overall, we make the following contributions:
• We provide an analysis of bugs found with a state-of-the-

art PM bug finding tool and their associated fixes, which
motivates our design of HIPPOCRATES.

• We develop HIPPOCRATES, a novel automated PM bug
fixing tool. HIPPOCRATES uses safe fixes coupled with a
safe heuristic to safely modify PM programs to eliminate
bugs that have been detected by PM bug finding tools.

• We demonstrate that HIPPOCRATES is able to fix all 23
bugs we reproduce while not introducing new bugs. HIP-
POCRATES also generates fixes which do not incur unnec-
essary overhead, rivaling and exceeding the performance
of manually-developed durability mechanisms.

6. Why ASPLOS

This paper tackles the new problem of automatically fixing
PM durability bugs, which is at the intersection of architec-
ture (the use of emerging PM technologies) and programming
languages (automated program repair using compiler tech-
niques and static analysis) research. Therefore, we believe
that ASPLOS is a good venue for this work.

7. Citation for Most Influential Paper Award

This paper represents a innovative work in automatically re-
pairing durability bugs in persistent memory systems and is
the first work to tackle the problem of how to fix the bugs
found by automatic persistent memory bug-finding tools. The
authors develop several strategies for safely fixing durability
bugs, thus fixing the original durability bug without introduc-
ing any new correctness problems. The paper demonstrated
that HIPPOCRATES, the tool built to automatically fix these
bugs, is both effective and efficient, thus proving the value of
a targeted and “no-harm” approach to automated bug fixing.
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