
NDA: Preventing Speculative Execution Attacks at Their Source
Ofir Weisse

University of Michigan
Ian Neal

University of Michigan
Kevin Loughlin

University of Michigan

Thomas F. Wenisch
University of Michigan

Baris Kasikci
University of Michigan

ABSTRACT
Speculative execution attacks like Meltdown and Spectre work by
accessing secret data in wrong-path execution. Secrets are then trans-
mitted and recovered by the attacker via a covert channel. Existing
mitigations either require code modifications, address only specific
exploit techniques, or block only the cache covert channel. Rather
than battling exploit techniques and covert channels one by one,
we seek to close off speculative execution attacks at their source.
Our key observation is that these attacks require a chain of depen-
dent wrong-path instructions to access and transmit secret data. We
propose NDA, a technique to restrict speculative data propagation.
NDA breaks the attacks’ wrong-path dependence chains while still
allowing speculation and dynamic scheduling. We describe a design
space of NDA variants that differ in the constraints they place on
dynamic scheduling and the classes of speculative execution attacks
they prevent. NDA preserves much of the performance advantage
of out-of-order execution: on SPEC CPU 2017, NDA variants close
68-96% of the performance gap between in-order and unconstrained
(insecure) out-of-order execution.

CCS CONCEPTS
• Security and privacy Hardware security implementa-
tion; • Computer systems organization Architectures.

KEYWORDS
speculative execution, meltdown, spectre, security

ACM Reference Format:
Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris
Kasikci. 2019. NDA: Preventing Speculative Execution Attacks at Their
Source. In The 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-52), October 12–16, 2019, Columbus, OH, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3352460.
3358306

1 INTRODUCTION
Speculative execution attacks [8, 13, 25, 27, 33–36, 38, 39, 45, 54,
55, 59, 62, 64, 65] exploit micro-architectural behavior and side
channels to exfiltrate sensitive information from a system. Unlike
classical software exploits that modify and observe only architectural

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358306

- Access secret
- Transmit secret

Mispredicted
branch

Wrong-path

1
Steer control2

 Squash34

a) Control-Steering Attack b) Chosen-Code Attack

Transmit secretSpeculative load
(access secret)

Wrong-path

1
Illegal access2

Squash3
4

Fault handler

Figure 1: Control-steering vs. chosen-code attacks. In control-
steering, the attacker steers control flow in existing victim code,
inducing unwanted access to the victim’s memory space. In
chosen-code, the attacker generates code that accesses privi-
leged data or data that belongs to another context.

state (such as registers and memory), speculative execution attacks
have demonstrated that attackers can retrieve secrets by control-
ling and observing micro-architectural state (e.g., the cache) during
speculative wrong-path execution.

Speculative execution attacks can be classified into two main
categories. One class (e.g., Spectre [34], Spectre 1.1 [33], and oth-
ers [8, 13, 35, 38, 55]) allows malicious code to mis-steer a victim
program’s control flow (e.g., by carefully mis-training branch predic-
tors) to execute specific instructions on the speculative wrong path.
Although wrong-path instructions are ultimately squashed (with no
effect on architectural state), the victim program is coerced into leak-
ing its own memory contents through a micro-architectural channel.
For instance, Chen et al. [13] show how control-flow in an SGX
secure enclave [42] can be steered to leak its own protected memory.
We classify these attacks as control-steering attacks (Fig. 1a).

Another class of attacks [25, 36, 45, 54, 59, 62, 64, 65] enables
unprivileged attacker code to access privileged memory that is tem-
porarily exposed during wrong-path execution. For instance, Melt-
down [36] allows reading kernel memory; Foreshadow [25, 62,
65] allows reading hypervisor, OS, SMM, or SGX memory; and
LazyFP [59] allows reading AES keys from AVX registers used by
another process. MDS attacks [45, 54, 64] allow reading recently
accessed memory belonging to other processes. Since the attacker
generates the code, they can select arbitrary instruction sequences
in both correct-path and wrong-path execution. We classify these
attacks as chosen-code attacks (Fig. 1b). These two classes of at-
tacks are fundamentally different and therefore require different
approaches for mitigation.

Existing software defenses against speculative execution attacks
work by modifying a program’s source code to block attack-specific
mechanisms. Current software defenses for control-steering attacks—
such as Retpoline [21, 28], IBPB [29], and improved lfence [15]

572

https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358306

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weisse, et al.

instructions—focus on preventing the attacker from steering the
execution of victim code. Unfortunately, these defenses are not
immediately applicable to existing binaries. Specifically, software
mitigations against chosen-code attacks involve modifying the OS,
hypervisor, and SMM code [23, 25, 37, 43]. A recent study by
Google [41] discusses why software approaches aimed at mitigating
timing channels by manipulating timers are insufficient. The authors
show that any optimizations performed by micro-architecture, no
matter how negligible, can become observable using an amplification
technique. Even if code modifications are made, these defenses can
be bypassed. For instance, attackers can redirect control flow to
evade fence instructions (e.g., by mis-training the branch target
buffer (BTB) [27, 34] or the return stack buffer (RSB) [33, 35, 38]).

Hardware defenses, on the other hand, have the potential to obvi-
ate the need to modify existing software [29, 31, 32, 48, 51, 53, 60,
69]. The first disclosed speculative execution attacks [27, 34, 36] use
caches as a covert channel to leak data from wrong-path execution.
Consequently, initial hardware defenses—such as InvisiSpec [69],
SafeSpec [31], and others [32, 48, 51, 53, 60]—seek to prevent
wrong-path execution from leaving secrets in the cache that can later
be recovered. Taram et al. [60] suggests a hardware modification
to automatically insert lfence micro-ops where needed. However,
the authors claim mainly to address Spectre v1 attacks that use the
data cache as a covert channel.

While these techniques are effective, a recent study [12] noted
that closing only the cache covert channel is insufficient to stop
speculative execution attacks, since the cache is only one of many
potential covert channels. Netspectre [55] and SMoTher Spectre [8]
have already shown that secrets can be transmitted via the FPU or via
port contention [4]. In §3, we further show how to transmit secrets
via the BTB.

Rather than isolating predictive structures [29] or sealing individ-
ual covert channels [31, 53, 69]—a ceaseless arms race—we instead
seek to close off speculative execution attacks at their source. Our
philosophy is to treat potentially wrong-path values as secret and
prevent these secret values from propagating through the micro-
architecture. Our key observation is that speculative execution at-
tacks require a chain of dependent wrong-path instructions to access
and transmit data into a covert channel. By preventing potentially
wrong-path values from propagating, we break these dependency
chains, thwarting the code sequences required to mount attacks.

We propose NDA—Non-speculative Data Access—a technique to
restrict speculative data propagation in out-of-order (OoO) proces-
sors. NDA only allows instruction outputs to flow to dependents if the
source instruction is considered safe. NDA restricts data propagation
by preventing tag broadcast for unsafe instructions, delaying wake-
up of their dependants in the issue queue until the source instruction
becomes safe.

We present a taxonomy of the building blocks of speculative
execution attacks, show how each class of attack depends upon data
propagation in wrong-path execution, and demonstrate how we can
define safe vs. unsafe to prevent the data flow required by the attack.
By composing various restrictions on when an instruction becomes
safe, we create a design space of NDA variants. The variants differ
in (1) the constraints they place on the dynamic execution schedule
(and therefore, performance), (2) the locations from which secret
data might be extracted (e.g., whether general purpose registers are

protected), and (3) the kind of speculation attacks they prevent (e.g.,
control-steering vs. chosen-code).

NDA defeats all 25 documented [8, 12, 45, 54, 64] speculative
execution attacks without the need to modify any existing code.
Importantly, however, NDA does not preclude all speculation or
OoO execution. For example, one NDA policy treats all instructions
after an unresolved branch as unsafe. These instructions may still
execute speculatively OoO, but they are restricted from propagating
their output to dependents until all preceding branches resolve. As
our evaluation demonstrates, despite delayed wake-ups, the vast
majority of the performance gap between in-order (the only other
model known to eliminate all known speculative execution attacks)
and unconstrained OoO execution is recovered.

We simulate NDA designs on the SPEC CPU 2017 benchmark
suite and compare its performance to InvisiSpec [69] on the same
setup. InvisiSpec blocks data-cache-based attacks and introduces
7.6-32.7% overhead in our setup. In comparison, NDA blocks all
covert channels. We show that an NDA policy that mitigates control-
steering vulnerabilities, which are fundamental to unconstrained
OoO execution, slows execution by only 10.7% and is 4.8× faster
than in-order. If we also preclude Meltdown-like hardware imple-
mentation flaws, NDA’s strictest policy slows down execution by
125% compared to an insecure OoO processor and is 2.4× faster
than in-order execution.

In short, we make the following contributions:
• We introduce a speculative-execution-attack taxonomy based

on how attacks induce wrong-path execution.
• We design NDA, a new technique to control speculative data

propagation in out-of-order processors to defeat speculative
execution attacks. NDA offers multiple variants with differing
security/performance tradeoffs.

• We evaluate six NDA variants on SPEC 2017 and show they
are effective and efficient.

2 BACKGROUND
Data Propagation in OoO Processors. Fig. 2 illustrates conceptual
steps in an instruction’s life-cycle in a modern OoO processor. Upon
dispatch into the reorder buffer (ROB), an instruction is not ready to
execute until all of its source operands—coming from instructions
S1 and S2 in Fig. 2—are ready (step 1). Once all source operands
are ready, the instruction issues and enters the execution pipeline
(step 2). When execution completes (step 3), the instruction wakes
its dependents (D1-D5) by broadcasting a tag corresponding to its
destination physical register to waiting instructions (step 4), marking
those instructions ready.

The essence of the NDA technique is to delay tag broadcast,
i.e., transition from step 3 to step 4. Rather than waking dependent
instructions when their input operands become ready, NDA wakes
them up when their input operands are safe. We expand on this basic
concept in §5.

Speculative Execution Attacks. Speculative execution attacks
exploit side-effects of wrong-path execution, which are typically
left undefined by processor vendors. While the contents of architec-
tural registers and memory are guaranteed to reflect precise state of
only committed instructions, wrong-path execution affects micro-
architectural structures. For instance, a wrong-path cache access

573

NDA: Preventing Speculative Execution Attacks at Their Source MICRO-52, October 12–16, 2019, Columbus, OH, USA

S1

S2

inst

D5

Ready

Ready

Ready

Ready

…
.

S1

S2

inst

D5

Ready

Ready

…
.

(3) Instruction completed,
 output not broadcast

S1

S2

inst.

D5

Ready

Ready

…
.

(4) Completed & broadcast

r x c br x c b

r x c b

(2) Sources ready & instruction
 executing. Not completed yet

S1

S2

inst.

D5

…
.

r x c b

(1) Source inputs not ready

D1D1

D1D1

Figure 2: Life-cycle of instructions in OoO processors. Even af-
ter the instruction has completed execution (3), the dependant
instructions (D1-D5) will not be able to access the output until
it is broadcast (4).

may allocate new lines or modify the cache replacement order; these
changes are not reverted when wrong-path instructions are squashed.
A variety of other micro-architectural structures are also not reverted
during squash, for example, branch direction predictors (e.g., pattern
history table), pre-decoded micro-op/trace caches, memory depen-
dence predictors, prefetchers, TLBs, fine-grain power management
state (e.g., for FPU/AVX units), and performance counters. State
changes in these micro-architectural structures can create side chan-
nels, where the state can be inferred, for example, based on timing
particular execution sequences. We refer to a side channel that is
used to intentionally transmit data as a covert channel. Attackers can
use wrong-path execution to transmit data, via a covert channel, that
is later inferred by correct-path execution and hence leaks that data
into architectural state.

3 PROBLEM ANALYSIS
We next classify speculative execution attacks based on three fun-
damental attack phases that exist in all known attacks. We then
describe the existing mitigation techniques, how they block the at-
tacks, and their shortcomings. Lastly, to demonstrate that closing
specific side channels is insufficient, we show an attack via a new
covert channel—the BTB.

3.1 Classifying Attacks
Attack Phases. All speculative execution attacks of which we are
aware comprise three key phases—access, transmit, and recover—
shown in Fig. 3. In the Access Phase (1○), secret data is loaded
into a temporary register. During the Transmit Phase (2○) the secret
data is covertly transmitted using micro-architectural side effects
that are not reverted when wrong-path instructions are squashed.
Finally, in the Recover Phase (3○), the transmitted secret is recov-
ered to non-speculative state (e.g., by observing the memory access
latency). Whereas the instructions involved in phases 1○ and 2○ are
speculatively executed and eventually squashed, the phase 3○ results

Access Phase:
Speculatively read secret into a

physical register

Restricted
memory/register

Cache PortsFPU

Attacker’s Memory

BTB

Transmit Phase:
Speculatively transmit secret via a

covert channel. Preprocessing
may be required

Recover Phase:
Receive covert transmission

non-speculatively

Physical register

s=(s&0xFF)*512
Pre-process e.g.,

Probe covert channel

TLB ...
T = *s

1

2

3

Physical register

Load secret s

s=&probe[s]

T =*s

PHT

Transmit via a
covert channel E.g:

Figure 3: Three phases of speculative execution attacks. Prior
defenses focus mostly on the cache covert channel, failing to
prevent leaks through other channels such as the FPU [55], the
BTB (§3), and others.

are committed to the architectural state. Wrong-path execution is
essential to these attacks, as it evades software and hardware protec-
tion mechanisms that prevent the secret data from leaking through
architectural state.

Control-Steering and Chosen-Code Attacks. We classify at-
tacks based on their methodology for performing the Access Phase (1○)
and the Transmit Phase (2○). We divide attacks based on their Access
Phase into two categories, which correspond to different attacker
threat models. We further subdivide these two attack classes accord-
ing to the covert channel exploited in the Transmit Phase. Table 1
illustrates this taxonomy for currently-known attacks.

In control-steering attacks, the attacker subverts a victim pro-
gram’s control flow to speculatively execute instructions that, as a
side-effect, leak data into a covert channel. This attack class leaks
data to which the victim application has hardware access privileges,
but are intended to be secret and might be protected (e.g., by permis-
sion or bounds checks) in software. For example, SGXPectre [13]
coerces a secure SGX [42] enclave to access and leak its encrypted
memory. We illustrate control-steering attacks in Fig. 1a.

Unlike a classical security vulnerability, wherein the attacker di-
rectly hijacks the program counter (e.g., a stack-smashing attack
that overwrites a return address), speculative control-steering attacks
only misdirect wrong-path execution, for example, by mis-training
branch predictors to direct instruction fetch to an attacker-selected
target. Hence, they leave no trace in the committed instruction se-
quence, but still leak data into a covert channel. Several approaches
that use control-steering have been demonstrated [33–35, 38].

In control-steering attacks, the attacker does not typically intro-
duce new instructions into the victim binary, rather, the attacker
composes a series of gadgets from existing code, similar to Return
Oriented Programming (ROP [11, 52, 56]).

By contrast, in chosen-code attacks—our second category based
on the Access Phase—we consider an adversary who can generate

574

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weisse, et al.

1 for (i=0; i < 256; i++) // init channel
2 clflush(probeArray[i*512]);
3 // Phase 1○ - access secret data:
4 // The attacker mis-trains the branch:
5 if (x < array_size) { // predicted taken
6 // wrong-path, x >= array_size
7 secret = array[x];
8 // Phase 2○ - covertly transmit secret:
9 t = probeArray[secret * 512];

10 }
11 // ... somewhere else in attacker's code
12 // Phase 3○ - recover secret:
13 for (guess = 0; guess < 256; guess++) {
14 addr = &probeArray[guess*512];
15 t1 = rdtscp(); // read timer
16 temp = *addr; // access probing array
17 t2 = rdtscp(); // read timer
18 if (t2-t1 <= CACHE_HIT_THRESHOLD)
19 results[guess] += 1;
20 }

Listing 1: Exfiltrating secret data using Spectre v1 control-
steering and the cache covert channel.

1 // Phase 1○ - access secret:
2 secret = *kernel_addr; // Faulting load
3 // Phase 2○ - covertly transmit secret:
4 // Executed in wrong-path
5 // before fault is fired:
6 t = probeArray[secret * 512];
7 // Phase 3○ - recover secret:
8 // see Listing 1

Listing 2: Exfiltrating secret data using the Meltdown chosen-
code attack and a cache side-channel.

and execute arbitrary code sequences to mount the attack. Such
an adversary already has access to its own registers and mem-
ory; these attacks instead seek to circumvent hardware protections
that preclude the attacker from accessing secret data in correct-
path code. For instance, Meltdown [36] accesses kernel memory;
Foreshadow [25, 62, 65] accesses SGX and hypervisor memory;
and LazyFP [59] accesses AVX registers used by another process.
These attacks exploit implementation flaws in the relative timing
of hardware protection checks and data flow between wrong-path
instructions—the secret data propagates among instructions and can
be leaked into a covert channel before protection checks squash the
wrong-path execution. We show chosen-code attacks in Fig. 1b.

Sample Attack Code. Listing 1 illustrates these phases for the
Spectre v1 [34] bounds check bypass attack [27], which is a control-
steering attack. In this attack, the victim code includes instructions
that access array at a given index x (Line 7). Before accessing
array, the victim code performs a bounds check on x (Line 5).
To circumvent the bounds check, the attacker mis-trains the branch
direction-predictor by invoking the victim code repeatedly with a
valid x.

To mount the attack, the attacker now calls the victim code with an
illegal value of x. The attacker chooses x such that array[x] will
refer to a location in the victim’s memory containing a secret. The
direction predictor mis-predicts the branch on Line 5 as taken, exe-
cuting Lines 7–9 on the wrong path. During wrong-path execution,
the code accesses (1○) the secret on Line 7. It then transmits (2○)
the secret (still in wrong-path) on Line 9. Later, in correct-path
execution, the attacker executes Lines 13–20 to recover (3○) the
secret from the cache side-channel. The timing for each access to
probeArray on Line 16 will vary based on whether or not the
corresponding cache line was loaded on Line 9. In our evaluation,

Spectre v1 [34]
Spectre v1.1 [33]
Spectre v2 [34,39]
Ret2spec [35,38]
NetSpectre [55]
SMoTher Spectre [8]
SSB (Spectre v4) [27]
<future attacks>
Meltdown (v3 / v3a) [27,36]
LazyFP[59]
Foreshadow (L1TF) [25,62,65]
MDS attacks [45,54,64]
<future attacks>

Phase 2

BT
B

Control
steering

Phase 1 Attack

Chosen
code

Sp
ec

ul
at

iv
e

lo
ad

s

d-
ca

ch
e

FP
U

O
th

er
?

- demonstrated in prior work; - demonstrated in this work

Po
rts

- d-cache-based attacks are defeated by prior work [31,48,53,69]

i-c
ac

he

Table 1: Taxonomy of attacks based on secret data access
method 1○ and covert channel 2○. NDA blocks all existing at-
tacks regardless of the covert channel they use. Most common
attacks use the d-cache side channel to exfiltrate secret data. All
currently known chosen-code attacks use loads and load-like
operations. Future attacks may use other instructions or other
covert transmission channels.

we illustrate the difference in access timing (blue squares in Fig. 4),
which reveals the secret data.

Listing 2 depicts an example of a chosen-code attack—a sim-
plified Meltdown exploit. Whereas the illegal load on Line 2 will
eventually fault, the instruction on Line 6—which executes on the
wrong path—will leave evidence in the cache from which the at-
tacker can recover the secret. The recover phase is identical to that
in Listing 1. To avoid trapping into the fault handler, the attacker
may use control-steering techniques to ensure the faulting load ex-
ecutes under a mis-predicted branch [36]. Nevertheless, we classify
the attack as chosen-code since the attacker controls the executed
binary.

3.2 Limitations of Existing Defenses
Current Mitigations. Hardware defenses mitigating control-steering
attacks try to prevent the attacker from mis-training branch predic-
tors (IBRS and STIBP [29]) or use a barrier instruction to prevent
speculation after a branch or context switch (lfence/IBPB [29]).
Unfortunately, recent attacks [33, 35, 38] reveal techniques to over-
come these mitgations. SSBD [6, 29] disables Speculative Store
Bypass (SSB, explained in §4.1) to prevent attackers from reading
data that was overwritten [27, 75]. However, SSBD only blocks
Spectre v4. and introduces up to 8% overhead [26].

Software defenses, such as Retpoline [21] and RSB stuffing [28],
protect call and ret instructions from mis-steering. Other com-
piler approaches [22, 46] create a data dependency between a branch
condition and code that follows the branch, disabling speculation.
However, these compiler approaches can only defeat Spectre v1 [34]
attacks. A recent study suggested a compiler modification that also

575

NDA: Preventing Speculative Execution Attacks at Their Source MICRO-52, October 12–16, 2019, Columbus, OH, USA

0 32 64 192 224 256
0

50

100

200

150

C
yc

le
s

Cache Secret Byte (42)

BTB Secret Byte (42)

96 128 160
Guess Value

Cache
BTB

Cache

BTB

Figure 4: Spectre v1, using either the cache (blue squares) or the
BTB (orange circles) as a covert channel. For the cache channel,
only the correct guess produces a cache hit, creating the cycle
difference ∆Cache. For the BTB channel, only the correct guess
successfully predicts the jump target, creating the cycle differ-
ence ∆BT B.

blocks Spectre v2 attacks [57]. Unfortunately, this approach can only
defeat cache-based attacks with 68-247% overhead.

Chosen-code attacks are mitigated by preventing speculative
loads from accessing restricted memory. For instance, Kernel Ad-
dress Space Layout Randomization (KASLR [23]) and Kernel Page
Table Isolation (KPTI [37, 43]) prevent Meltdown attacks from read-
ing privileged kernel memory. KASLR [23] randomizes the kernel
address space similar to how ASLR is used to protect user-space pro-
cesses. KPTI manages separate page tables for the kernel and user-
space processes, preventing user code from issuing even illegal loads
to kernel memory. KPTI swaps page tables on every transfer between
CPU privilege levels. Mitigating Foreshadow [25, 62, 65] requires
modifications to the OS, hypervisor, and SMM code, such as modify-
ing page-table management, altering virtual machine scheduling, and
adding L1 cache flushes when switching security domains [25, 65].

Unfortunately, all these defense mechanisms block only specific
exploit techniques. Therefore, one must deploy a myriad software
and hardware defenses to be resilient against all control-steering and
chosen-code attacks.

Recent work suggests preventing both control-steering and chosen-
code attacks by blocking the cache side channel [31, 48, 53, 69], thus
interdicting the transmit phase. However, given the abundant supply
of covert channels (see Fig. 3), defeating speculative attacks by clos-
ing each channel individually is challenging. Exploits have already
been demonstrated for other channels. Netspectre [55] demonstrated
that the power state of the FPU is a viable speculative covert chan-
nel. SMoTher Spectre [8] showed how to transmit data via port
contention [4]. We next show an attack via the BTB.

The BTB Covert Channel. We demonstrate a new covert chan-
nel that can be exploited even when the cache covert channel is not
available—the BTB. The BTB stores a mapping between branch
instructions’ addresses and the associated target addresses. For exam-
ple, a call instruction located at address A to a function located at
address B installs the mapping A => B in the BTB. The next time the
processor fetches the call instruction at address A, the processor’s
front-end will speculatively redirect fetch to address B.

If the BTB predicts correctly (Fig. 5a), the speculatively-fetched
instructions are eventually retired. However, if the prediction is

correctTarget

jumpToTarget

correctTarget

1

2

3

predict

squash

1 predict

b) Incorrect BTB prediction

a) Correct BTB prediction

wrongTarget

Wrong-path
Overhead of mis-prediction:

jumpToTarget

Figure 5: The BTB covert channel. The attacker can observe if
the BTB prediction was correct by measuring execution time.

wrong, the processor will squash the wrong-path execution, starting
at the mispredicted instruction at address B, before executing the
correct path. This recovery process is illustrated in Fig. 5b. In our
experiments on the gem5 [9] simulator, we observe that it takes
~16 cycles for the BTB miss to resolve, wrong-path execution to
be squashed, and execution to resume at the correct target (1+2 in
Fig. 5b). Crucially, updates to the BTB during speculation are not
reverted by the squash, making it an effective covert channel. Note
that (as with caches) in the absence of security concerns, filling the
BTB (and updating its replacement policy) during speculation may
be advantageous to avoid future BTB misses.

To demonstrate the BTB covert channel, we construct a variant of
Spectre v1 [34] that leaks a secret byte through a speculative BTB
update, as illustrated in Listing 3. To leak a single byte, our covert
channel comprises 256 distinct functions (targets in Line 2).
During both the Transmit Phase and Recover Phase, we invoke
targets only from a single call site, jumpToTarget (Line 6),
ensuring that BTB entries mapping to targets all originate from
the same PC and therefore conflict in the BTB.

When the branch on Line 10 is mispredicted, the attacker can
access any value from the process’ address space, depending on the
value of x. The attacker then transmits the secret by speculatively
calling jumpToTarget with the secret value in Line 13. If the
speculation window is large enough, the processor updates the BTB
entry for the call instruction in Line 6 based on secret.

The access phase must be repeated for every guess (Line 19) since
the recover phase is destructive: The execution of Line 21 alters the
contents of the BTB to point to targets[guess]. To confirm
that the BTB acts as the covert channel in our attack, it is important
to validate that execution time differences do not arise from i-cache
or d-cache hit or miss latency; no change to the cache hierarchy
during the attack may depend upon the secret value. To validate our
attack, we ensure the targets array in Line 2 and all 256 target
functions are cached during access, transmission, and recovery.

We report the effectiveness of the BTB covert channel on gem5
via the orange circles in Fig. 4. During the Recover Phase, in lines
17-24, all the wrong guesses will incur the 16-cycle prediction and
squashing delay, as depicted in Fig. 5b. The correct guess will
execute faster, as depicted in Fig. 5a.

576

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weisse, et al.

1 // array of 256 unique target functions
2 void (*targets[256])(void);
3 // all jumps are from the same location,
4 // hence the same BTB entry is consulted
5 void jumpToTarget(int index)
6 { targets[index](); }
7 void victim_function(x) {
8 // Phase 1○ - access secret data:
9 // The attacker mis-trains the branch:

10 if (x < array_size) { // predicted taken
11 secret = array[x]; // wrong path
12 // Phase 2○ - covertly transmit secret:
13 jumpToTarget(secret); // updates BTB
14 } }
15 // ... somewhere else in attacker's code
16 // Phase 3○ - recover secret:
17 for (guess = 0; guess < 256; guess++) {
18 // Induce victim to leak secret value
19 victim_function(x);
20 t1 = rdtscp(); // read timer
21 jumpToTarget(guess); // BTB prediction
22 t2 = rdtscp(); // read timer
23 if (t2-t1 <= CORRECT_PATH_THRESHOLD)
24 results[guess] += 1;
25 }

Listing 3: Exfiltrating secret data using the Spectre v1 control-
steering attack and the BTB side-channel.

The BTB covert channel is one of many potential machine-specific
transmission channels. We use our BTB channel PoC to demonstrate
that NDA is agnostic to any specific transmission channel (§6).

4 THREAT MODELS
NDA design variants address four different threat models, which
vary in the locations from which secret data are stolen and whether
the attacker may mount control-steering or chosen-code attacks.
NDA’s goal is to eliminate side-channels created in wrong-path
execution. Correct-path side channels have been studied in prior
work [51, 70, 71].

All threat models are agnostic to the covert channel used in the
attacks. For control-steering attacks, we consider two threat models,
based on where secrets reside. The first model considers attacks
against secrets stored in memory or special registers, as is the case
for all currently-known control-steering attacks. Our second control-
steering threat model additionally considers hypothetical attacks that
leak secrets residing in general-purpose registers (GPRs). In our
third threat model, for chosen-code attacks, we consider only threats
against secrets in privileged memory and registers, since chosen-
code attacks presuppose attacker-controlled GPRs. Lastly, our fourth
threat model comprises the union of these threats, considering both
control-steering and chosen-code attacks for secrets in memory,
special-registers, and GPRs.

4.1 Leaking Memory via Control-Steering
The first step of all known control-steering attacks is to steer wrong-
path execution into code accessing a secret in memory or manipulate
execution timing to cause a load to observe a stale value. We assume
the attacker can steer execution at any branch instruction and ma-
nipulate the execution timing of all instructions. Branch instructions
include all variants of jmp, call, and ret.

We do not consider phantom branches, where the BTB is mis-
trained to steer control flow from a program counter value that does
not correspond to a branch. The dispatch stage stalls micro-ops
whose opcode is unknown. Hence, if the BTB predicts a branch
where there is none, dispatch will stall at the phantom branch until

its opcode is obtained, which will resolve the misprediction and
cause any younger fetched instructions to be discarded before they
enter the OoO back-end. Wrong-path instructions that are squashed
before dispatch are not a threat.

We also do not consider potentially faulting instructions as steer-
ing points in control-steering attacks. Whereas a fault can result in
wrong-path execution, we consider attacks based on faulting instruc-
tions (e.g., Meltdown, Foreshadow, LazyFP, MDS, etc.) as part of
the threat model for chosen-code attacks.

Speculative Store Bypass. Also known as SSB, or Spectre vari-
ant 4 [27], this attack performs the Access Phase (1○ in Fig. 3) by
having a malicious speculative load bypass a store whose address is
still unresolved. The malicious load then speculatively yields stale
(secret) data. Although this attack may not necessarily require mis-
directed control flow in the Access Phase, we consider it a special
case of control-steering, since the attacker leverages an existing code
snippet. If the attacker could choose the code, they could read the
stale data without the need to exploit the speculative store-bypass.

4.2 Leaking GPRs via Control-Steering
All currently-known control-steering attacks extract secrets residing
in memory. Nevertheless, we recognize that future attacks might
extract secrets residing in the victim’s GPRs. So, our second threat
model considers the attacker of §4.1 that steers the victim’s control
flow to leak GPR contents.

In this scenario, the steered victim’s code already possesses the
secret in a GPR. At this point, the access phase of the control-steering
attack (1○ in Fig. 3) has already (possibly unintentionally) been
done by the victim. We therefore focus on hindering the attacker
from performing the second phase (2○ in Fig. 3)—transmitting the
GPR-resident secret. All known attacks require data flow between
micro-ops during the transmit phase to preprocess the secret (e.g.,
calculate an offset relative to a base address) before it can be leaked.

We do not prevent an attack that leaks a secret using only a single
speculative micro-op. In principle, it may be possible to covertly
transmit GPR-based secrets using a single micro-op. For instance,
if a GPR contains a secret value that corresponds to a valid virtual
memory address, the attacker can speculatively issue a load that
will fetch this address into the cache hierarchy, thus performing the
transmit phase in a single micro-op. However, such a scenario would
require (a) a secret value that forms a valid memory address, and
(b) victim code that voluntarily loads the secret into a GPR shortly
before the vulnerable steering point. No known attacks (cf. Table 1)
exploit this behavior.

4.3 Leaking Memory with Chosen-Code
For chosen-code attacks, we consider attackers that attempt to ac-
cess secrets residing in memory. Specifically, we consider an at-
tacker who can influence code generation to control both correct-path
and wrong-path execution. We treat read operations from special-
purpose registers, such as AVX (as abused in LazyFP [59]) and
Model Specific Registers (MSRs, in Meltdown variant 3a [27]) like
memory accesses in crafting our defense—the special instructions
(e.g., rdmsr) used to access these registers are treated like loads in
our solution. In chosen-code attacks, the attacker already controls

577

NDA: Preventing Speculative Execution Attacks at Their Source MICRO-52, October 12–16, 2019, Columbus, OH, USA

their own GPRs and we therefore do not consider the contents of
any GPR to be secret.

Instructions are guaranteed to be correct-path when they retire.
At retirement, the head of the ROB satisfies hardware permission
and memory-ordering checks. Ergo, retired instructions cannot leak
secrets accessed from the wrong-path.

4.4 Combining the Threat Models
Finally, we consider NDA’s most conservative threat model—a com-
bination of all threats outlined above. We suppose an attacker that
conducts both (a) control-steering attacks to extract secrets from
the victim’s memory and GPRs, and (b) chosen-code attacks to
access privileged memory and special registers. This combined
threat model is similar to the practical approach taken by Win-
dows and Linux, which deploy mitigations for both classes of at-
tacks [29, 37, 43, 44, 61].

5 DESIGN
NDA’s main design goal is to mitigate both control-steering and
chosen-code attacks while reaping the benefits of OoO speculative
execution as much as possible. We next discuss different variants of
NDA, which provide different policies for speculative data propaga-
tion depending on the threat model. Different NDA data propagation
policies offer different security guarantees and have corresponding
performance implications. We build NDA upon a baseline physical
register-based OoO micro-architecture [74].

The key insight behind NDA’s design is that speculative instruc-
tions (either in the correct or the wrong-path) can safely execute
without leaking secrets as long as their inputs are results of safe
instructions. We define instructions as safe with respect to our threat
models such that wrong-path execution can not leak any more in-
formation into a side channel than a correct-path instruction. Con-
sequently, we eliminate the gap between speculative side channel
attacks and non-speculative side channels, which security-conscious
programmers already must reason about. The different NDA policies,
listed in rows 1-6 of Table 2, define which instructions are consid-
ered safe such that they may wake-up dependent instructions (allow
instructions to advance from step 3 to step 4 in Fig. 2).

To mitigate control-steering attacks, NDA restricts data propa-
gation following an unresolved branch or unresolved store address
(rows 1-4 in Table 2), depending on where secrets reside and if
store-bypass (SSB) is a threat. We consider any instruction follow-
ing a predicted branch as unsafe until the branch target and direction
are resolved. We also consider loads that follow a store with an
unresolved address as unsafe (see Bypass Restriction in §5.2). To
mitigate chosen-code attacks, NDA introduces a propagate-on-retire
mechanism (row 5), which defeats all 11 documented chosen-code
attack variants [12, 45, 54, 64] and similar future exploits that rely
on speculative loads. In this policy, the value returned by any load
instruction (or other instructions that read sensitive registers, such as
rdmsr on x86) are considered unsafe until the load is ready to retire.
Finally, the two mechanisms can be combined to defend against both
classes of attacks (row 6).

5.1 Strict Data Propagation
NDA addresses control-steering attacks by defining unresolved branches
and unresolved stores—for which predictions may be incorrect—as
the borders between safe and unsafe speculation. When a branch
micro-op enters the ROB, it is unresolved. Since the fetch unit pre-
dicts which instructions to fetch following the branch (via the BTB,
RSB, etc.), subsequently dispatched micro-ops may be wrong-path.
Similarly, when a store micro-op enters the ROB, it is unresolved
until its address is calculated. If a store’s address has not been calcu-
lated, loads that follow the store may erroneously access stale data
if their addresses overlap. We consider two variants of data propaga-
tion restrictions with regards to control-steering attacks: strict and
permissive. Both variants leverage a Bypass Restriction mechanism
to defeat SSB attacks. We now describe strict propagation and then
explain permissive propagation and bypass restriction in §5.2.

Strict Propagation (rows 3-4 in Table 2) defends against threat
models where secrets may reside in memory, special registers, and
GPRs (i.e., the union of the threats described in §4.1 and §4.2). Under
this policy, NDA marks all micro-ops dispatched after an unresolved
branch or store as unsafe. Unsafe instructions may wake up and
compete to issue as in a baseline OoO (i.e., they may issue when their
operands become ready). But, when an unsafe micro-op completes
execution (step 3 in Fig. 2), it writes back to its destination physical
register, but does not broadcast its destination tag to dependent
instructions, does not mark its destination register ready, and does not
forward its output value on the bypass network. Hence, dependent
instructions will not issue and cannot observe the unsafe value.

Managing Value Propagation. When the eldest outstanding
micro-op resolves, it marks instructions in the ROB safe until the
next eldest unresolved branch/store. ROB entries are extended with
three bits: unsafe tracks if the instruction follows a still-unresolved
micro-op, exec tracks if the instruction has executed, and bcast
tracks if the instruction has broadcast its tag to wake dependents.
Upon instruction completion, if unsafe, tag broadcast is deferred.
When a micro-op resolves, the unsafe bit for subsequent ROB
entries until the next unresolved branch/store are cleared. !unsafe
&& exec && !bcast instructions arbitrate for tag broadcast
ports, competing with instructions completing in the current cy-
cle (completing instructions have priority to avoid pipeline stalls);
bcast is set when broadcasting.

When safe instructions broadcast their tags to the issue queue,
they mark their destination register(s) ready, waking their depen-
dents (step 4 in Fig. 2). We do not add additional tag broadcast
ports to the ROB over baseline OoO; the number of broadcasts is
unchanged, broadcasts are time-shifted until preceding micro-ops
resolve. For example, assume that the broadcast bandwidth is four
and that two instructions completed this cycle. If another three in-
structions were marked safe, two of these newly-safe instructions can
wake dependents; the third waits for the next cycle. In the majority
of our evaluation, we assume broadcast and wake-up of newly-safe
instructions fit within the existing wake-up critical path. In Fig. 9e,
we include a sensitivity study that shows the impact of further delay
due to critical path constraints; a one-cycle delay reduces CPI by
less than 3.6%.

Fig. 6 illustrates an ROB snapshot when executing code akin to
Listing 1, depicting various NDA data propagation policies. Column

578

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weisse, et al.

Operation Description Strict
propagation

 Permissive
propagation

Load
restriction

 Strict prop.
+ load rest.

1 mov rax,[rbp-0x848] prepare call
2 mov rdi,rax prepare call
3 callq 0x8c2 call victim function

∙∙∙∙∙∙∙
4 mov eax,[rip+0x201732] load array_size
5 cmp r12,rax if(x < array_size)
6 jae 0x912 if(x < array_size)
7 lea rax,[r12+rbx*1] calc addr. &arr[x]
8 movzx eax,[rax] Load arr[x] (access phase)
9 movzx eax,al char s=arr[x](preprocess)

10 shl eax,0x9 s=s*512 (preprocess)
∙∙∙∙∙∙∙ Preparing &probe[0]

11 movzx edx,[rdx+rax*1] t&=probe[s] (Transmit phase)

r x c br x c b r x c b

r x c b
r x c b

r x c b
r x c b
r x c b

r x c
r x

r x c b
r x c b

r x c b
r x c b
r x c b

r x c b
r x c b

r x

r x c

r x c b

r x c

r x c b
r x c b

Not ready to execute

Ready & executing Completed, not broadcast (unsafe) Completed & broadcast (safe)

Resolved branch Unresolved branch <blank>

r x c

r x c b

r x c

r x c

a b c d

Figure 6: An ROB snapshot during the execution of Spectre v1 (Listing 1), with different NDA policies. The branch (call) at line 3 has
been resolved, therefore the load in line 4 is safe under strict and permissive propagation and can broadcast (wake-up dependants).
Under the load restriction policy, the instructions in lines 1,4, and 8 can be executed but are not safe until retirement. Therefore, line
2 cannot be issued to execute.

a○ shows the ROB snapshot under strict propagation. The branch
at Line 6 has not resolved, so all following instructions are marked
unsafe. Whereas the instruction at Line 7 executes to completion, it
is unsafe and therefore cannot wake the dependent instruction on
Line 8.

Branches resolve when the branch micro-op completes execu-
tion. Upon a misprediction, all younger micro-ops in the ROB are
squashed and renaming tables are recovered, discarding values in
physical registers that never became safe, preventing potentially
secret data from leaking.

5.2 Permissive Data Propagation
For threat models where NDA only protects secrets in memory or
special registers, we can safely optimize performance via permissive
propagation (rows 1-2 in Table 2), which marks only load instruc-
tions after an unresolved branch/store as unsafe. Arithmetic and
control instructions are unconditionally marked safe at dispatch.

The key intuition for this policy is that only loads can introduce
new secret values into the microarchitecture. Loads that precede the
eldest unresolved micro-op will commit their value to architectural
GPRs, which are not protected under this threat model. Note that
wrong-path execution due to exceptions (As in Meltdown or Fore-
shadow) are also not addressed under this threat model; we address
these as chosen-code attacks (§5.3).

For example, consider two dependent instructions i1 and i2 fetched
after an unresolved branch. If i1 is an arithmetic instruction (any
non-load), it is considered safe. Therefore, i1 can broadcast its out-
put upon completion—allowing i2 to issue—without waiting for the
branch to resolve.

This threat model also protects the contents of special registers
(e.g., AVX or MSRs, see LazyFP [59] and Meltdown v3a [27]).
The instructions to read these registers (e.g., rdmsr) are treated

like loads and are also marked unsafe when dispatched after an
unresolved branch.

Lines 7-8 in Fig. 6 illustrates the difference between strict (column
a○) and permissive (column b○) propagation. In contrast to strict

propagation, the lea instruction on Line 7 is marked safe since it is
not a load operation. Therefore, lea wakes its dependent instruction
on Line 8 immediately.

Bypass Restriction (BR). To defeat SSB [27] attacks we intro-
duce a new mechanism for safe store bypass, which we use in tandem
with both strict and permissive propagation (rows 2,4 in Table 2). In
this scheme, unlike Intel’s SSBD [29], loads are allowed to execute
even if they bypass stores in the Load Store Queue (LSQ). However,
loads are marked unsafe until all bypassed stores’ addresses are
resolved. If a bypassed store resolves its address in a way that gener-
ates an order violation, the offending load and younger instructions
are squashed by the memory dependency unit.

5.3 Load Restriction
NDA protects against chosen-code attacks by blocking data propa-
gation from speculative loads (row 5 in Table 2), such as in Melt-
down [36], Foreshadow [62, 65], LazyFP [59], and MDS attacks [45,
54, 64]. These attacks exploit specific flaws in processor implemen-
tations where data propagates from a load that will eventually fault.
Each of these flaws has been individually patched [25, 29]. How-
ever, given the complexity of modern processor implementations,
one might expect similar implementation errors in the future. More-
over, in the chosen-code context, there are a myriad of ways to
induce wrong-path execution (faulting loads, Intel TSX transaction
aborts, interrupt delivery, breakpoint and syscall instructions, perfor-
mance counter overflow, load replay due to memory-order misspecu-
lation [20, 74], etc.) As prior work [69] suggests, effective defenses
must address the common problems underlying chosen-code attacks.

579

NDA: Preventing Speculative Execution Attacks at Their Source MICRO-52, October 12–16, 2019, Columbus, OH, USA

Control
steering

(memory)

Control
steering
(GPRs)

Chosen
code

Overhead
vs. OoO

Speedup
wrt. IO

1 Perm. propagation 10.7% 4.2x
2 Perm. propagation+BR 22.3% 3.8x
3 Strict propagation 36.1% 2.5x
4 Strict propagation+BR 45% 2.3x
5 Load restriction 100% ?
6 Full protection (4+5) 125% ?
7 InvisiSpec-Spectre* 7.6%
8 InvisiSpec-Future* 32.7%

Control
steering

(memory)

Control
steering
(GPRs)

Chosen
code

Overhead
vs. OoO

Speedup
wrt. IO

1 Perm. propagation 12.1% 4.1x

2 Strict propagation 28.5% 3.7x

3 Load restriction 87.5% 2.5x

4 Full protection (1+3) 103.1% 2.3x

Mechanism

*

Defeats all covert channels Defeats d-cache based attacks
Defeats all covert channels, but does not block SSB
Defeats all covert channels, except single micro-op GPR-attacks
Our evaluation of InvisiSpec[69] on SPEC 2017 is detailed in §6.1

Table 2: NDA propagation policies (rows 1-6) and the attacks
they prevent. Bypass Restriction (BR) adds protection against
SSB (Spectre v4). Special registers, such as AVX and MSRs
(LazyFP [59] and Spectre v3a [27]), are protected by treat-
ing their accesses like loads. None of the 25 documented at-
tacks [8, 12] leak data from GPRs nor without at least two de-
pendent micro-ops.

We therefore propose a blanket NDA protection policy, load re-
striction, which both blocks all 11 documented [12, 45, 54, 64]
chosen-code attacks and offers the potential to prevent future vari-
ants. For instance, NDA’s load restriction blocks MDS attacks, which
were discovered after our submission. Under load restriction, loads
are considered unsafe until they are the eldest unretired instruction
(i.e., at the head of the ROB). With load restriction, the micro-
architecture guarantees that a load will wake its dependents if and
only if it will immediately retire. Column c○ of Fig. 6 illustrates an
ROB snapshot when load restriction is used. The loads in Lines
1, 4 are independent and can execute concurrently, enabling high
Memory & Instruction Level Parallelism MLP & ILP. However, each
will wake its dependents (at Lines 2, 5) only when it retires.

5.4 Preventing All Classes of Attacks
To defeat both control-steering and chosen-code attacks, NDA’s
final policy composes strict propagation and load restriction (row
6 in Table 2). This NDA policy is the most defensive, so we call
it full protection. Column d○ in Fig. 6 illustrates an ROB snapshot
when the full-protection policy is used. The loads on Lines 1 and
4 are issued and executed to completion, but are not considered
safe. In contrast to the load-restriction case presented in Column c○,
the arithmetic operation on Line 7 is considered unsafe in Column
d○ and therefore cannot wake the instruction on Line 8. However,

parallel execution is still possible (e.g., lines 4 and 7 still execute in
parallel) unlike in an in-order processor.

5.5 Security Analysis
Strict Propagation with Bypass Restriction. This policy protects
secrets in memory and hinders exfiltration of secrets in GPRs via
control-steering attacks. Spectre v1, v1.1, v2, v4 (SSB) [27], and
ret2spec [35, 38] are blocked. Most importantly, NetSpectre [55],
SMoTher Spectre [8], and our BTB attack (§3)—which are not

Parameter Value
Architecture X86-64 at 2.0 GHz
Core (OoO) 8-issue, no SMT, 32 Load Queue entries, 32 Store

Queue entries, 192 ROB entries, 4096 BTB entries,
16 RAS entries

Core (in-order) TimingSimpleCPU from gem5
L1-I/L1-D Cache 32kB, 64B line, 8-way set associative (SA), 4 cycle

round-trip (RT) latency, 1 port
L2 Cache 2MB, 64B line, 16-way SA, 40 cycle RT latency
DRAM 50ns response latency

Table 3: Gem5 simulation configuration.

addressed by prior work [48, 60, 69]—are defeated. For secrets
residing in memory, the output of the access phase (1○ in Fig. 3)
cannot be used by the transmit phase 2○ in the same wrong-path
execution window. For an attacker to leak contents from a GPR
the transmit phase in a successful attack must comprise only micro-
ops that do not depend on one another and that only depend on
values from instructions prior to the branch. We note that all existing
attacks (cf. Table 1) require multiple dependent micro-ops to transmit
secrets.

Permissive Propagation with Bypass Restriction. This policy
protects secrets in memory but does not protect secrets in GPRs
(e.g., rax). This level of protection is on par with the threat model
presented in recent work [48, 60] with the added benefit of blocking
all covert channels. All 14 documented control-steering attacks [8,
12], including those listed above, are blocked. Any load following
an unresolved branch or store is marked unsafe. Therefore, the
transmission phase 2○ will not be able to read the output of the
load. However, unlike in strict propagation, non-load micro-ops
are marked safe. If the secret already resides in a GPR, the attacker
can pre-process and transmit the secret using a sequence of wrong-
path operations.

Load Restriction. The load restriction policy addresses all known
chosen-code attacks, including Spectre v3, v3a, v4 [27], LazyFP [59],
Foreshadow/NG [25, 62, 65], and MDS attacks [45, 54, 64]. In
chosen-code threat models, the attacker already controls the exe-
cuted code, and can thus trivially access the contents of their own
GPRs and memory space. Load restriction protects secrets in priv-
ileged memory and special registers. Specifically, any micro-op
depending on a load (or load-like instruction) will be ready only
after the load retires. Upon retirement, the values returned by loads
are no longer speculative and are accordingly safe to read.

Load restriction also has the potential to block future chosen-code
attacks that access memory and special registers. Additionally, given
that none of the 25 existing speculative execution attacks [8, 12] leak
secrets from GPRs, the load restriction policy prevents all known
control-steering attacks.

Full Protection. Combining load restriction with the strict prop-
agation policy (row 6 in Table 2) offers the most defensive de-
sign point of NDA. The full-protection policy defeats all 25 known
control-steering and chosen-code attacks exfiltrating data from mem-
ory, special registers, and hinders the attacker’s ability to transmit
contents of GPRs.

580

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weisse, et al.

0 1 2 3 4 5
Cycles per Instruction, normalized to OoO

pe
rlb

en
ch

gc
c

bw
av

es

mcf

ca
ctu

BSSN

pa
re

st

lbm

om
ne

tp
p

wrf

xa
lan

cb
mk

x2
64

na
md

OoO
Permissive
Permissive+BR
Strict
Strict+BR
Restricted Loads
Full Protection
In-Order
InvisiSpec-Spectre
InvisiSpec-Future

0 1 2 3
Cycles per Instruction, normalized to OoO

ble
nd

er

ca
m4

de
ep

sje
ng

im
ag

ick

lee
la

po
vr

ay

na
b

ex
ch

an
ge

2

fot
on

ik3
d

ro
ms

xz

Ave
ra

ge

Figure 7: NDA and InvisiSpec [69] performance on SPEC 2017. Error bars depict the 95% confidence intervals.

581

NDA: Preventing Speculative Execution Attacks at Their Source MICRO-52, October 12–16, 2019, Columbus, OH, USA

0 32 64 96 128 160 192 224 256
Guess Value

50

0

100

150

200

C
yc

le
s Cache

BTBBTB Secret Byte (42)

Cache Secret Byte (42)

Figure 8: Spectre v1 when using NDA permissive propagation
policy. The cycle differences in Fig. 4 (Spectre v1 without NDA)
are eliminated. Thus, NDA conceals the secret byte’s value, re-
gardless of the covert channel.

6 EVALUATION
We next demonstrate NDA’s effectiveness in mitigating speculative
execution attacks and evaluate the performance of six different NDA
policies.

6.1 Experimental Setup & Methodology
We evaluate NDA on gem5 [9] running the SPEC CPU 2017 bench-
mark suite [58]. Table 3 shows our CPU configuration, which reflects
a Haswell-like microarchitecture and matches that used in recent
architectural studies of speculative execution attacks [69]. To obtain
results that represent SPEC benchmark performance with statisti-
cal confidence guarantees, we extend gem5 to enable a simulation
sampling methodology similar to SMARTS [67]. We run SPEC
benchmarks on real hardware (Haswell Xeon E5-2699) and dump
snapshots of their execution state at fixed intervals using gdb. We
have developed a new tool to convert these snapshots to gem5 check-
points and resume their execution in simulation [2, 3].

From each checkpoint, we warm simulation state for 5 million
instructions and measure performance for 100,000 instructions. We
validate that the number of unknown cache references during mea-
surement (references to a cache set for which not all tags are initial-
ized in warmup) is negligible (i.e., the worst-case performance error
due to unknown cache references is much smaller than the sampling
error). We report 95% confidence intervals of CPI in Fig. 7.

We compare NDA’s performance to both variants of InvisiS-
pec [69] with the same SMARTS methodology and gem5 configura-
tion, using the source code provided by the authors [1]. NDA’s and
InvisiSpec’s performance for the baseline configuration on SPEC 17
are similar within the confidence interval. Absolute performance
numbers for InvisiSpec, depicted in Fig. 7, differ from the orig-
inal paper due to different benchmarks (SPEC 06 vs. SPEC 17)
and sampling methodology (a single billion-instruction segment
vs. SMARTS sampling). Post-publication, the InvisiSpec authors
released a bug fix that affects performance, which we include.

6.2 Effectiveness of NDA
We evaluate Spectre v1 [34] (Listing 1 and Listing 3) on unmodified
gem5 without NDA protections. As illustrated in Figure 4, both the
cache and the BTB covert timing channels clearly leak the secret

byte. For the correct guess of the secret byte, the cache covert channel
yields a ~140-cycle decrease due to a cache hit. The BTB covert
channel similarly yields a ~16-cycle decrease due to the overhead
of mis-prediction, as shown in Figure 5. However, when running
the Spectre v1 cache and BTB attacks with permissive propagation
enabled, NDA blocks the speculative data leakage regardless of the
covert channel in use. As depicted in Figure 8, the correct secret
value is indistinguishable from the other 255 candidates.

6.3 NDA Performance
We evaluate NDA’s performance with ten different configurations;
the six NDA policies described in §5, two baselines, and two Invi-
siSpec configurations. The baseline configurations are the in-order
and unconstrained OoO processors listed in Table 3. The in-order
processor represents the extreme case of no speculation and is thus
trivially immune to speculative execution attacks. We note that,
besides NDA’s load-restriction and full-protection, the in-order pro-
cessor is the only other execution model known to defeat all 25
documented speculative execution attacks, regardless of the covert
channel they use. The unconstrained OoO processor offers the best
performance, but is insecure.

Cycles Per Instruction (CPI). Fig. 7 depicts the CPI of all con-
figurations across all benchmarks, normalized to OoO (averages at
the bottom right). The overheads of different policies are summa-
rized in Table 2. Defeating SSB with Bypass Restriction (BR) adds
6.6-9.9 % overhead. In the case of permissive propagation with BR
(row 2 in Table 2)—our highest performance policy which prevents
all 14 control-steering vulnerabilities—the average performance loss
relative to the OoO baseline is 10.7%. This policy thwarts all known
control-steering attacks and recovers 96% of the performance gap
between the OoO and In-Order baselines.

In the case of full protection (row 6 in Table 2)—our most secure
policy—the average performance loss is 125%. This policy prevents
all 25 documented variants of both control-steering and chosen-code
attacks while also offering potential protection against future attacks.
Despite the restrictions it imposes on the dynamic schedule, full
protection still closes 68% of the performance gap between in-order
and OoO.

Fig. 9a depicts an average time breakdown for all OoO design
variants. The bars are normalized to the baseline OoO design point.
Commit cycles are cycles in which at least one instruction retires.
Memory stalls are cycles in which the head of the ROB is an in-
complete memory operation. Back-end stalls are cycles in which the
head of the ROB is a non-memory operation that is not yet ready
to retire. Front-end stalls are cycles in which the ROB is empty
or cycles which are spent squashing wrong-path execution. NDA
policies restrict data propagation and thereby limit dynamic sched-
uling. Therefore, on average, fewer instructions are committed in a
given cycle, increasing the overall number of commit cycles. Since
instruction-level parallelism for both memory and non-memory in-
structions is reduced, more cycles are spent on memory stalls and
back-end stalls. Front-end stall cycles generally vary little across
designs, on average contributing only 2% of the difference in cycles.

Wake-up Latency. NDA introduces a delay between instruction
completion and tag broadcast. Whereas broadcast delay does not
directly affect CPI, the delay propagates to dependent instructions

582

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weisse, et al.

Figure 9: Aggregated statistics over SPEC 17 benchmarks. (a) NDA extend the cycles spent on commit and backend stalls. (b),(c)
MLP & ILP is still high across NDA policies. (d) As expected, NDA causes delays in latency-to-issue. However, overall impact on CPI
is substantially smaller. (e) The impact of NDA logic latency on CPI is relatively small.

in the ROB by delaying their issue. We measure this effect by mea-
suring the average delay instructions experience from dispatch to
wake-up under each design. The average latencies across all bench-
marks are shown in Fig. 9d. NDA policies add on average 4-39 cycles.
This increased latency also manifests in up to 78% increase in cycles
spent on back-end stalls, shown in Fig. 9a. However, the wake-up
latency has a modest impact on overall performance (CPI).

Memory and Instruction Parallelism (MLP/ILP). The favor-
able performance of NDA compared to the in-order processor can
be explained by observing the Memory- and Instruction-Level Paral-
lelism of each profile. The geometric means of MLP & ILP across
all benchmarks are depicted in Fig. 9b-c. We follow Chou et al [14]
and report MLP as the average outstanding off-chip misses when
at least one is outstanding. Whereas the MLP & ILP in the various
NDA profiles are at times lower than the OoO baseline by as much as
6% and 44% (respectively), they are better than the in-order baseline
processor by 72% and 39%, where MLP & ILP cannot exceed 1.0.
These results suggest that NDA enables execution parallelism among
off-chip misses despite the scheduling restrictions of speculative
instructions. Importantly, NDA does not typically restrict the issue
time of loads, only when they may wake dependents. Ergo, typically
only dependent loads are delayed, which do not add to MLP or ILP.

Comparison to InvisiSpec [69]. Since NDA and InvisiSpec have
different threat models, detailed in Table 2, a direct comparison is
not straight forward. In our evaluation, InvisiSpec-Spectre defeats all
cache-based control-steering attacks with 7.6% slowdown. In com-
parison, NDA blocks control-steering attacks, regardless of the covert
channel they use, with 10.7%-36.1% slowdown, depending on where
secrets reside. For futuristic chosen-code attacks, InvisiSpec-Future
introduces 32.7% overhead compared to 125% in NDA. However,
NDA blocks all covert channels, including port contention [8], the
FPU [55], and the BTB (§3).

7 RELATED WORK
The first micro-architectural side-channel attacks used the cache
side channel to infer AES keys from a neighboring process or

VM [7, 10, 47]. Since then, a myriad of side channel techniques
have been developed, such as Flush+Reload [73] and other advanced
techniques [5, 18, 19, 24, 30, 49, 72, 76]. We refer to these attacks
as classical cache attacks. These attacks do not leverage speculative
wrong-path execution. Other work demonstrates how the cache side
channel can be used as a covert channel [40, 66, 68]. DRAM [50]
and issue ports [4, 8] are also demonstrated as viable covert channels.

The first speculative execution attacks—Meltdown [36] and Spec-
tre [34]—leveraged prior work on cache covert channels to transmit
data obtained from wrong-path execution via the data-cache (d-
cache). Other speculative attacks using various techniques to access
secrets or steer execution also leveraged the d-cache covert chan-
nel [13, 16, 25, 27, 33, 35, 38, 59, 62, 65]. Since the d-cache covert
channel is widely exploited, initial defenses [31, 48, 53, 69] have ex-
clusively focused on protecting the d-cache. However, these defenses
do not mitigate non d-cache speculative execution attacks [8, 12,
39, 55, 63]. Specifically, Mambretti et al. [39] demonstrated covert
transmission of secrets via the instruction-cache (i-cache).

Unfortunately, it is not trivial to apply the same d-cache defense-
techniques to provide i-cache protection. For example, Sakalis et
al. [53] delay speculative loads on an L1 cache-miss to prevent
speculative d-cache modifications. However, the authors mention
it is difficult to apply the same policy to i-cache misses with low
overhead: While d-cache delays do not preclude other in-flight in-
structions from executing OoO, i-cache delays stall the front-end
and starve the entire pipeline.

InvisiSpec [69] allows speculative loads to execute using a dedi-
cated buffer, only committing updates to the d-cache once specula-
tion resolves. While the authors hypothesize that a similar method
could be applied to the i-cache, they do not implement or evaluate
the performance overhead of such i-cache protection. In comparison
to cache-only defenses, NDA is agnostic to the covert channel used
in the Transmit Phase and blocks all known attacks.

Conditional-Speculation [48] protects secrets placed in memory,
but not in GPRs. In comparison, NDA’s strict-propagation prevents
the attacker from performing the pre-processing required for the

583

NDA: Preventing Speculative Execution Attacks at Their Source MICRO-52, October 12–16, 2019, Columbus, OH, USA

1 stop_speculative_exec();
2 register long secret = *secret_addr;
3 // ... operate on secret
4 secret = 0; // scrub secret
5 resume_speculative_exec();

Listing 4: Closing the registers-to-memory security gap.

Transmit Phase. NDA thus defeats NetSpectre and SMotherSpectre
attacks, while providing better protection for secrets in registers.

Prior work [17, 60] suggest mitigations to defeat the Spectre v1
variant. Taram et al. [60] suggest Context Sensitive Fencing, a hard-
ware modification to automatically insert lfence micro-ops where
needed, to block the d-cache channel. SpectreGuard [17] suggested
delaying broadcast of completed micro-ops to defeat Spectre v1
across multiple covert channels. However, as stated by the authors,
their main goal is to block Spectre v1 attacks. NDA defeats all known
variants regardless of the covert channel they use.

Recent work (such as DAWG [32], CEASER [51], and others [70,
71]) hinder the attacker’s ability to deterministically cause a cache
line collision with another process or VM, thwarting most cache-
based side and covert channels. However, these techniques do not
mitigate attacks that use non-cache covert channels.

We addressed related work on deployed defense mechanisms for
speculative execution attacks in §3.2.

8 DISCUSSION
NDA is capable of defeating both control-steering and chosen-code
attacks while performing considerably better than in-order proces-
sors. However, even though NDA blocks all known attacks, it may
still be possible to use a control-steering attack to read general-
purpose registers if there exists a feasible single micro-op that can
leak the register’s contents.

To protect registers, one can introduce an instruction or a pro-
cessor mode that temporarily disables speculation and out-of-order
execution during the window of vulnerability when a secret value is
loaded from memory and resides in a register until it is overwritten.
We illustrate such a defense in Listing 4. We note this defense would
only be effective if used in addition to NDA. Without NDA, a control-
steering attack could simply steer the execution to bypass Line 1 and
speculatively execute Lines 2-3 to leak the register’s contents.

9 CONCLUSION
Speculative execution attacks are challenging to mitigate. Blocking
individual covert channels or specific exploitation techniques is in-
sufficient. To design effective mitigations, we introduced a new clas-
sification of speculative execution attacks based on how each attack
induces wrong-path execution. Our new technique for controlling
speculative data propagation, NDA, defeats all known speculative
execution attacks and drastically reduces the attack surface for future
variants. On SPEC 2017, we show that the four NDA design points
offer effective and performant mitigations.

REFERENCES
[1] 2019. InvisiSpec-1.0 source code. https://github.com/mjyan0720/InvisiSpec-1.0.
[2] 2019. Lapidary: Crafting more beautiful gem5 simulations. https://medium.com/

@iangneal/lapidary-crafting-more-beautiful-gem5-simulations-4bc6f6aad717.
[3] 2019. Lapidary: creating beautiful gem5 simulations. https://github.com/efeslab/

lapidary.
[4] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

Garcia, and Nicola Tuveri. 2018. Port Contention for Fun and Profit. Cryptology

ePrint Archive, Report 2018/1060. https://eprint.iacr.org/2018/1060.
[5] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and Yuval

Yarom. 2016. Amplifying side channels through performance degradation. In
ACSAC. ACM, 422–435.

[6] AMD. 2018. Speculative Store Bypass Disable. https://developer.amd.com/wp-
content/resources/124441_AMD64_SpeculativeStoreBypassDisable_
Whitepaper_final.pdf.

[7] Daniel J Bernstein. 2005. Cache-timing attacks on AES. (2005). http://palms.ee.
princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf.

[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTher-
Spectre: exploiting speculative execution through port contention. arXiv preprint
arXiv:1903.01843 (2019).

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architec-
ture News 39, 2 (2011), 1–7.

[10] Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against
AES. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 201–215.

[11] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. 2008. When
good instructions go bad: Generalizing return-oriented programming to RISC.
In Proceedings of the 15th ACM conference on Computer and communications
security. ACM, 27–38.

[12] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2018.
A Systematic Evaluation of Transient Execution Attacks and Defenses. arXiv
preprint arXiv:1811.05441 (2018).

[13] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. 2019. SgxPectre:
Stealing Intel Secrets from SGX Enclaves Via Speculative Execution. In 2019
IEEE European Symposium on Security and Privacy (EuroS P). 142–157. https:
//doi.org/10.1109/EuroSP.2019.00020

[14] Yuan Chou, Brian Fahs, and Santosh Abraham. 2004. Microarchitecture optimiza-
tions for exploiting memory-level parallelism. In Computer Architecture, 2004.
Proceedings. 31st Annual International Symposium on. IEEE, 76–87.

[15] Debian 2018. Debian Bug report logs - #886367 intel-microcode: spectre mi-
crocode updates. Debian. https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=
886367.

[16] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry Ponomarev,
et al. 2018. BranchScope: A New Side-Channel Attack on Directional Branch
Predictor. In Proceedings of the Twenty-Third International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ACM,
693–707.

[17] Jacob Fustos, Farzad Farshchi, and Heechul Yun. 2019. SpectreGuard: An Efficient
Data-centric Defense Mechanism against Spectre Attacks.. In DAC. 61–1.

[18] Cesar Pereida Garcia and Billy Bob Brumley. 2017. Constant-Time Callees with
Variable-Time Callers. In USENIX Security Symposium. USENIX Association,
83–98.

[19] Cesar Pereida Garcia, Billy Bob Brumley, and Yuval Yarom. 2016. “Make Sure
DSA Signing Exponentiations Really are Constant-Time”. In ACM Conference on
Computer and Communications Security. ACM, 1639–1650.

[20] Kourosh Gharachorloo, Anoop Gupta, and John L Hennessy. 1991. Two techniques
to enhance the performance of memory consistency models. (1991). https:
//courses.engr.illinois.edu/cs533/sp2019/reading_list/gharachorloo91two.pdf.

[21] Google 2018. Retpoline: a software construct for preventing branch-target-
injection. Google. https://support.google.com/faqs/answer/7625886.

[22] Google 2018. Speculative Load Hardening. Google. https:
//docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_
Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6.

[23] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-
rice, and Stefan Mangard. 2017. Kaslr is dead: long live kaslr. In International
Symposium on Engineering Secure Software and Systems. Springer, 161–176.

[24] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security
Symposium. USENIX Association, 897–912.

[25] Intel 2018. Deep Dive: Intel Analysis of L1 Terminal Fault. In-
tel. https://software.intel.com/security-software-guidance/insights/deep-dive-
intel-analysis-l1-terminal-fault.

[26] Intel 2018. Details and Mitigation Information for Variant 4. In-
tel. https://newsroom.intel.com/editorials/addressing-new-research-for-side-
channel-analysis/#gs.4778nz.

[27] Intel. 2018. Intel Analysis of Speculative Execution Side Chan-
nels. https://software.intel.com/security-software-guidance/api-
app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-
Side-Channels-White-Paper.pdf.

[28] Intel 2018. Retpoline: A Branch Target Injection Mitigation. In-
tel. https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-
Branch-Target-Injection-Mitigation.pdf.

584

https://github.com/mjyan0720/InvisiSpec-1.0
https://medium.com/@iangneal/lapidary-crafting-more-beautiful-gem5-simulations-4bc6f6aad717
https://medium.com/@iangneal/lapidary-crafting-more-beautiful-gem5-simulations-4bc6f6aad717
https://github.com/efeslab/lapidary
https://github.com/efeslab/lapidary
https://eprint.iacr.org/2018/1060
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf
http://palms.ee.princeton.edu/system/files/Cache-timing+attacks+on+AES.pdf
https://doi.org/10.1109/EuroSP.2019.00020
https://doi.org/10.1109/EuroSP.2019.00020
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=886367
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=886367
https://courses.engr.illinois.edu/cs533/sp2019/reading_list/gharachorloo91two.pdf
https://courses.engr.illinois.edu/cs533/sp2019/reading_list/gharachorloo91two.pdf
https://support.google.com/faqs/answer/7625886
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit#heading=h.phdehs44eom6
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://newsroom.intel.com/editorials/addressing-new-research-for-side-channel-analysis/#gs.4778nz
https://newsroom.intel.com/editorials/addressing-new-research-for-side-channel-analysis/#gs.4778nz
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weisse, et al.

[29] Intel. 2018. Speculative Execution Side Channel Mitigations. https:
//software.intel.com/security-software-guidance/api-app/sites/default/files/
336996-Speculative-Execution-Side-Channel-Mitigations.pdf.

[30] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. 2014. Wait a Minute! A fast, Cross-VM Attack on AES. In RAID (Lecture
Notes in Computer Science), Vol. 8688. Springer, 299–319.

[31] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2018. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free Speculation. arXiv preprint
arXiv:1806.05179 (2018).

[32] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 974–987.

[33] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

[34] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre Attacks: Exploiting Speculative Execution. In 40th IEEE Symposium on
Security and Privacy.

[35] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return stack
buffer. In 12th USENIX Workshop on Offensive Technologies, WOOT. 13–14.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. 2018.
Meltdown: Reading kernel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18). 973–990.

[37] LWN 2018. A page-table isolation update. LWN. https://lwn.net/Articles/752621/.
[38] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution

using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2109–2122.

[39] Andrea Mambretti, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, and Anil Kurmus. 2019. Two methods for exploiting speculative
control flow hijacks. In 13th USENIX Workshop on Offensive Technologies (WOOT
19).

[40] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon.
2015. C5: cross-cores cache covert channel. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
46–64.

[41] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest.
2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. arXiv preprint arXiv:1902.05178 (2019).

[42] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative in-
structions and software model for isolated execution. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy. ACM. http://software.intel.com/sites/default/files/article/413936/hasp-
2013-innovative-instructions-and-software-model-for-isolated-execution.pdf

[43] Microsoft 2018. Mitigating speculative execution side channel hardware vulnera-
bilities. Microsoft. https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-
speculative-execution-side-channel-hardware-vulnerabilities/.

[44] Microsoft 2018. Protect your Windows devices against Spectre and Melt-
down. Microsoft. https://support.microsoft.com/en-us/help/4073757/protect-
your-windows-devices-against-spectre-meltdown.

[45] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck,
Daniel Genkin, Daniel Gruss, Berk Sunar, Frank Piessens, and Yuval Yarom. 2019.
Fallout: Reading Kernel Writes From User Space. (2019).

[46] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and Christof
Fetzer. 2018. You Shall Not Bypass: Employing data dependencies to prevent
Bounds Check Bypass. arXiv preprint arXiv:1805.08506 (2018).

[47] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. In Cryptographers’ Track at the RSA Conference.
Springer, 1–20.

[48] Lutan Zhao Peinan Li and CAS) Rui Hou (Institute of Information Engineering,
CAS); Lixin Zhang (HXT Semiconductor Co.LTD); Dan Meng (Institute of Infor-
mation Engineering. 2019. Conditional Speculation: An Effective Approach to
Safeguard Out-of-Order Execution Against Spectre Attacks. In Proceedings of the
25th IEEE International Symposium on High-Performance Computer Architecture.
IEEE.

[49] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. 2017. To BLISS-B or not
to be: Attacking strongSwan’s Implementation of Post-Quantum Signatures. In
CCS. ACM, 1843–1855.

[50] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks..
In USENIX Security Symposium. 565–581.

[51] Moinuddin K Qureshi. 2019. CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. In Proceedings of 51th International
Symposium on Microarchitecture.

[52] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC) 15, 1 (2012), 2.

[53] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2019. Efficient Invisible Speculative Execution Through Selective
Delay and Value Prediction. In Proceedings of the 46th International Symposium
on Computer Architecture. ACM, 723–735.

[54] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. arXiv:1905.05726 (2019).

[55] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2018. Net-
spectre: Read arbitrary memory over network. arXiv preprint arXiv:1807.10535
(2018).

[56] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of the 14th ACM
conference on Computer and communications security. ACM, 552–561.

[57] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. 2019. Restricting
Control Flow During Speculative Execution with Venkman. arXiv preprint
arXiv:1903.10651 (2019).

[58] SPEC. 2017. Standard Performance Evaluation Corporation SPEC CPU 2017.
https://www.spec.org/cpu2017/.

[59] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register
State using Microarchitectural Side-Channels. arXiv preprint arXiv:1806.07480
(2018).

[60] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-
Sensitive Fencing: Securing Speculative Execution via Microcode Customization.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems.

[61] Ubuntu 2018. Spectre And Meltdown. Ubuntu. https://wiki.ubuntu.com/
SecurityTeam/KnowledgeBase/SpectreAndMeltdown.

[62] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution. In Proceedings of the 27th USENIX Security Symposium.
USENIX Association.

[63] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. (2018).

[64] Stephan van Schaik, Alyssa Milburn, Sebastian ÃŰsterlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-flight Data Load. In S&P.

[65] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient
Out-of-Order Execution. Technical report (2018). See also USENIX Security
paper Foreshadow [62].

[66] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud.. In USENIX Security symposium.
159–173.

[67] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C Hoe.
2003. SMARTS: Accelerating microarchitecture simulation via rigorous statistical
sampling. In ACM SIGARCH Computer Architecture News, Vol. 31. ACM, 84–97.

[68] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen,
and Richard Schlichting. 2011. An exploration of L2 cache covert channels in
virtualized environments. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop. ACM, 29–40.

[69] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In Proceedings of the 51th International Sympo-
sium on Microarchitecture (MICRO’18).

[70] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. 2017. Se-
cure hierarchy-aware cache replacement policy (SHARP): Defending against
cache-based side channel attacks. In Computer Architecture (ISCA), 2017
ACM/IEEE 44th Annual International Symposium on. IEEE, 347–360.

[71] Mengjia Yan, Yasser Shalabi, and Josep Torrellas. 2016. ReplayConfusion: de-
tecting cache-based covert channel attacks using record and replay. In The 49th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Press,
39.

[72] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side
Channel Attacks in a Non-Inclusive World. In 40th IEEE Symposium on Security
and Privacy.

[73] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security. 719–732.

[74] Kenneth C Yeager. 1996. The MIPS R10000 superscalar microprocessor. IEEE
micro 16, 2 (1996), 28–41.

[75] Project Zero. 2018. speculative execution, variant 4: speculative store bypass.
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528.

585

https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://lwn.net/Articles/752621/
http://software.intel.com/sites/default/files/article/413936/hasp-2013-innovative-instructions-and-software-model-for-isolated-execution.pdf
http://software.intel.com/sites/default/files/article/413936/hasp-2013-innovative-instructions-and-software-model-for-isolated-execution.pdf
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://support.microsoft.com/en-us/help/4073757/protect-your-windows-devices-against-spectre-meltdown
https://support.microsoft.com/en-us/help/4073757/protect-your-windows-devices-against-spectre-meltdown
https://www.spec.org/cpu2017/
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/SpectreAndMeltdown
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/SpectreAndMeltdown
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528

NDA: Preventing Speculative Execution Attacks at Their Source MICRO-52, October 12–16, 2019, Columbus, OH, USA

[76] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In ACM Conference on Computer

and Communications Security. ACM, 990–1003.

586

	Abstract
	1 Introduction
	2 Background
	3 Problem Analysis
	3.1 Classifying Attacks
	3.2 Limitations of Existing Defenses

	4 Threat Models
	4.1 Leaking Memory via Control-Steering
	4.2 Leaking GPRs via Control-Steering
	4.3 Leaking Memory with Chosen-Code
	4.4 Combining the Threat Models

	5 Design
	5.1 Strict Data Propagation
	5.2 Permissive Data Propagation
	5.3 Load Restriction
	5.4 Preventing All Classes of Attacks
	5.5 Security Analysis

	6 Evaluation
	6.1 Experimental Setup & Methodology
	6.2 Effectiveness of NDA
	6.3 NDA Performance

	7 Related Work
	8 Discussion
	9 Conclusion
	References

